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[Text] Annotation

The authors investigate, on the one hand, the organization of structures of

multimachine, multiprocessor and conveyor computing systems and the organization

of computations in them, and one the other hand, the majority of kmown methods

for building high-speed synchronous adders, multipliers and devices for division
, used in computing systems and machines.

Preface

When we started on this book, we realized there is currently no shortage of material
on computing systems. On the contrary, the flow of books and articles on this sub-
ject is essentially outstripping the development of technology and methods of
applying computing systems. The number of titles of just monographs on this subject
probably exceeds tlie number of computing systems that have been implemented and are.
operating in the world. Meanwhile, there are still tco many points not yet clear

in this field.

Even the terminology has not stabilized. In this book, by the phrase "computing

- system,” used in the title, we mean computing resources designed to execute parallel
computations; a precise definition of this concept is in section 1.1.1.

But the question least analyzed, in our view, is throughput of computing systems.
Too often the data given on the throughput of a computing system in design or pro-

- duction are obtained by simply adding the throughput of the individual resources
that make up the system. Meanwhile, the situations users of the actual computing
system encounter may be considerably different; accordingly, the data on system
throughput that he needs are also different.

If the system is used within a major computer center, wheré a large number of users
solve their relatively small problems, total system throughput is of little interest
to each individual user. It is important to him only to the extent that it affects

1
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the time he gets tor operating in the interactive mode or the jobs accepted from
him for processing in the batch mode.

We deal with a very similar situation, as a rule, in using a computing system with-
in an automated production management system (on the scale of an enterprise, sector
and the national economy as a whole) and in various information retrieval systems.
Here too there is usually a number of small jobs with few links to each other, but
operating with a common data bank. But the designer of an ASU [automated manage-
ment system] or information retrieval system must, of course, be interested in
the total throughput of computing resources since the specific set of jobs in his
system must be executed within specific time intervals (sometimes--within several
hours, or several days or several weeks).

We encounter a fundamentally different situation in automated process control sys-
tems, in solving major scientific problems and in other cases, High throughput of
compyting resources is needed in this case to obtain within a brief time a solution
to one, but rather massive, problem, It seems to us in many cases neither the com-
puter system designers, nor those expecting to use the systems for the purposes in-
dicated clearly understand that the same computer system cannot achieve identical
throughput in solving major problems of different classes and that there has to be
a specific correspondence between the specific problem properties and the computing
- system structure for computing system capabilities to be used reasonably effi-

ciently.

In this book, when we speak of high-throughput computing systems, basically we have
in mind precisely the latter situation (precise definitions of actual user through-
put and user efficiency of a computing system are given in section 1,1.2.).

Chapters 1 and 2 are devoted to a detailed consideration of precisely these points.
Singled out as a result is the type of synchronous computing systems which poten-
tially can achieve the maximum in actual user throughput. Naturally, this through-
put can be implemented when a certain class of problems is run (i.e. problems

- having certain properties), but this class is rather broad and includes rather
major problems.

Chapters 3-6 are devoted to an examination of the most complex technical questions
that arise in building these systems--development of synchronous methods of execu-
ting arithmetic and logic operations, i.e. methods that provide for minimal time
in executing an operation irrespective of the operands on which it is executed.

The importance of these chapters is considerably broader than could be deduced from
the preceding, since the use of synchronous methods for executing operations is
necessary even when building conventional (single-processor) control machines de-
sigred to operate in real time. In many cases, these synchronous methods of execu-
ting operations achieve higher speed than the well known asynchronous methods, and
it is expedient to apply them in developing any high-speed digital computer in
general,

Chapter 7 is intended for the reader who needs more background and who would like
to understand fully the content of the whole book. He should start reading the

book precisely from this chapter which contains elementary information on the
principles of computer technology.

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2

FOR OFFICTAL USE ONLY

Chapters 1 and 2 of this book were written by M. A, Kartsev and chapters 3-7 by
V. A. Brik.

The authors will be grateful to readers for comments made on the book's content.
) _ V. A. Brik, M. A, Kartsev
4. High-Speed Synchronous Multipliers

Multiplication has to be performed to solve the majority of computing problems.
Problems that include division can often be solved by using multiplication, addition
and subtraction. Division can be performed, for example, by using multiplication
and tables of inverse values stored in memory. There are many methods for "getting
around" division, i.e. accomplishing it without special-purpose devices designed

for this.

Multiplication cannot be "avoided." The only way to avoid direct calculation of a
product is to use multiplication tables. BHowever, employing this method in ma-
chines with parallel operation requires a large amount of storage. Any software
method of multiplication requires repeated addition which cannot be perfcrmed as
quickly as multiplication is performed by using high-speed hardware methods.’ There-
fore, the rapid hardware method for performing multiplication is a very common
approach in designing the arithmetic unit.

All known synchronous methods for speeding up multiplication reduce essentially to
the separate or complex use of the following three methods:

1. Reducing the time needed for performing addition of partial products, i.e. the
products of the multiplicand by the individual digits or groups of digits of the
multiplier.

2. Reducing the number of partial products by using multiplicand multiples formed
in advance.

3. Using subtraction in multiplication which permits reducing the number of
~additional adders needed to form multiples of the multiplicand.

This classification is based on logical and mathematical ideas, the implementation
of which leads to raising speed. Each of these directions is embodied in the group
of methods for speeding up multiplication, the hardware solutions of which can
differ considerably from each other.

In this chapter, the basic synchronous methods for speeding up execution of multi-
plication are discussed.

4.1. Decreasing the Time for Adding Partial Products

The time for adding all the partial products can be reduced by three methods:
speeding up the procedure for adding the next partial product to the sum of the
preceding partial products; starting the addition of the following partial product
prior to completion of the addition of the preceding partial product; and finally,
building circuits that add the running sum of partial products at once to several
successive partial products. '
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The main implementation of the first method is the use of a fast adder for adding
the next partial product to the sum of the preceding. If one desires, this group
of methods may also include the use of the well known multiplying circuits that
overlap addition with a shift of the multiplicand (fig. 7.7.1, b and d [not repro-
duced]).

The second method is implemented in the method of multiplying in which the so-called
carry save adder is used [l and section 4.3.2.]. The idea of this method consists
in forming the running sum of the next partial product with the sum of the preceding
partial products in the form of a two-digit code, i.e. in the form of two numbers.,
In the extreme case, one of these two numbers is formed from the step-by-step sums
s, and the other from the step-by-step carries e. The principle of operation of
this device is illustrated by the simplified structural diagram shown in fig. 4.1.1.

Key: ! n|(5) r————
1. Rgl -- register 1 1ye! |_r2(d)
2. Rg2 -- register 2
3. Rg3 ~- register 3 I ™ oy ]
4, Rgh ~-— register 4 P
5. P -- next partial product
6. Sm -- coincidence-type adder
7. e =-- step-by-step carries
8. s =-- step-by-step sums Fig. 4 l l

n (5)

Key: )

1. Rgl -- register 1

2. Rg2 -- register 2 i

3. Rg3 -~ register 3 3 ,*(9)
4., Rgh -- register 4 l M,

5. Pl —- partial product 1 ‘1‘“
6. Sml -- adder 1

7. e -- step-by-step carries

8. s -— step-by-step sums

9. P2 -~ partial product 2
10, Sm2 -- adder 2
11, Sm3 -- adder 3

Fig. 4.1.2

During each cycle, the next partial product P is added to the sum of the preceding
partial products in the coincidence-type adder Sm., At the end of the cycle, the
values of the signals e and s are stored in registers Rg3 and Rg4, and at the start
of the next cycle are sent to registers Rgl and Rg2., A gain in speed is achieved

R because there is no carry propagation process in the adder Sm; its operating time in
this case is reduced, obviously, to the operating time of one one-digit adder.

With more economical (but also slower) versions, the entire adder is subdivided not
into individual digits, but into relatively quick q-digit (1< q < n) adders. In
doing so, the first of the two indicated numbers is formed from the outputs of the
sums of these adders, and the second number, containing gq-fold fewer significant
digits, from the carry signals generated in the q-digit adders (by one signal for
each such adder).
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In any of these versions, after the two-digit code of the final product is obtained,
the two-digit code is translated into one-digit, i.e. conventional addition. This
may be done in a conventional parallel, or even better--in a fast parallel, adder.
In the device shown in fig. 4.1.1, final addition may be performed in the adder 8m,
which must in this case, after running through all the cycles of addition with the
partial products, be "retuned" from the mode for translating three-digit code (i.e.
three numbers) into two-digit--to the mode for translating two-digit code into
one-digit. Instead of this, final addition may be performed in a separate adder,
which should be installed after registers Rg3 and Rg4. This version of the device
will be shown in fig. 4.1.2.

, The third method for speeding up the process of adding partial products assumes the
introduction of additional adders into the arithmetic unit. The number m of partial

- products that are simultaneously added to the running sum of partial products may
vary. A multiplication operation, in the process, consists of a series of cycles,
during each of which m new partial products are added. In doing so, the carry
storage method is also usually used and this speeds up the process further. 1In fig.
4,1.2, as an example, it is shown how another two (m = 2) partial products Pl and P2
can be added in each cycle to the running sum of partial products and with that the
sum formed in the form of two-digit code. Final addition in this scheme is done by
adder Sm3 which it is advisable to make fast.

In the ultimate version, the multiplier composes at once all partial products.
Multiplication in this case is performed {n one cycle. Multipliers of this type are
called simultaneous (array, synchronous, pyramids of adders etc.)., An analysis and
description of these devices are given in sections 4.4, and 6.3,

4.2. Preliminary Formation of Multiples of the Multiplicand

In this method of multiplication, the multiplier is subdivided into groups of q
digits each and may have yet another group containing less than q digits. Each
group of digits is decoded independently of the others as a conventional binary num-
ber. Considering by convention that the point is located at the right of the group,
in decoding there is generated one of the numbers (signals)

0, 1, 2, 3, +00, 23 -1

and used as the next partial product i3 respectively one of the 29 multiples of the
multiplicand C, shifted the necessary way relative to the running sum of partial
products:

B} 0, 1C, 2C, 3C, ..., 2% - 1)C.

The rule for decoding one group for the case q = 3 is shown in table 4.2.1.

Table 4.2.1.

Digits | Digits Digits Digits

of group Multiple | of group Multiple of group Multiple | of group Multiple
i
|

000 0 010 2C 100 4C 110 6C
3
- 001 1c 011 3C 101 5C 111 7C
5
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Thus, the individual digits of the group when decoded correspond to the natural

weights: -
q digits
X XX ... XX
N-120-29-1 g1 e

Let us designate the number of groups into which the multiplier is subdivided (or,
which is the same, the number of partial products) by m. The relationship between
n, q and m has the following form:

m=]—§—[". | (42.1)

*) ]di{ 1s the smallest integer not less than d.

Extreme cases of subdividing of the multiplier into groups arethe case when all

groups are "full"
s e oo .o oo ...X

] 2 : m~—1

(lengths of the groups are indicated at the top, their numbers at the bottom), and
the case when a group not full contains only one digit:

AL L L '
0...0XX...XX..X...X...X B !
= 5

(the group not full is shown at the'left, but it can be in any other position of the
muitiplier). The remaining cases are intermediate between these two, What has been
said is 1llustrated by the double inequality

(m—1)g+1<n<myg,

the right and left boundaries of which correspond to the two indicated extreme
cases of subdivision. The relationship (4.2.]) is valid in all cases.

Those multiples of KC, for which K is odd and greater than one, are formed in ad-
vance by using auxililary adders, the number of which, evidently, is equal to

297~ 1, The remaining multiples of the multiplicand are derived through additional
shifts from C and from the multiples generated by the auxiliary adders, Thus, when

= 2, an adder for forming 3C is required; when q = 3, adders of 3C, 5C and 7C are
needed; when q = 4, adders of 3C, 5C, 7C, 9C, 11C, 13C and 15C, etc.

One group of auxiliary adders may compute the multiples of KC, using as source num-
bers the values of +C2t (t 1s an integer) obtained by a simple shift of the multi-
plicand., Forexample; 3C =C + 2C, 5C=4C +C, 7C=8C - C, 9C = 8C + C,

15C = 16C - C, etc. The other auxiliary adders have to use the outputs of the
adders of the first group, For example: 13C = 8C + 5C or 13C = 16C - 3C, etc.

6
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It is evident that when this method is used, decoding of the groups may begin (i.e.
multiplication may begin) at either end of the multiplier. It is also possible to
decode simultaneously several groups of digits of the multiplier; this necessity
occurs when several partial products are added simultaneously in the multipliet, as
was shown, for example, in fig. 4.1.2.

It is believed that when this method is used, multiplication time is reduced about
gq~fold (we assume that the partial products in turn are added in a parallel accumu-
lating adder, do not consider the possibility of the presence of one not full group
of digits of the multiplier and ignore the time spent by the auxiliary adders on
forming the multiples of the multiplicand in the beginning of the operation). This
comment also pertains to the methods discussed in section 4.3.

4.3, Use of Negative Partial Products

This method is usually applied in combination with the preceding. Discussed below
are two alternatives for using subtraction when multiplying. In both cases, each
partial product corresponds to multiplication of the multiplicand by a group of q
digits of the multiplier. The main difference is that with the first alternative,
decoding may begin at either end of the multiplier, while in the second, multiplica-
tion is done from the low-order digits of the multiplier. There &re other
differences too,

4.3.1. Method of Multiplication by a Group of q Digits of the Multiplier with
Decoding of q + 1 Digits of the Multiplier

When this method of speeding up multiplication is used, the next group of q digits
of the multiplier is decoded together with the high-order digit of the adjacent low-
order group, which is considered an additional low-order digit. All digits of the
group, except the high-order and additional, are assigned the same natural weights
as in the method described in section 4.2, The high-order digit of the group is

assigned the weight - Zq-l, and the additional digit the weight 1:
q+1 digits
X X X...XX X

—2-) N-129-0 9120 20

Thus, the high-order digit of each group is decoded twice: once as the high-order
digit of this group, and again as the additional digit of the adjacent high-order
group.

The high-order digit of the highest-order group and the additional low-order digit

of the lowest-order group must always be zeroes. Therefore, there must be
satisfied the double inequality

(m—1)g<n<<mg—1,

the boundaries of which are explained the following way (each lower arc indicates
the simultaneously decoded digits):
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q q q A
/\/—\/’_\ .
WX...X X Xeooe X0,

N—

1 2 3 m

7 2 3 m

The number of groups of digits of the multiplier (number of partial products) with
this method is equal to

i

q

The sum of the weights of the nonzero digits of the group determines the factor K
in the multiple K¢ selected as the next partial product. The value of K in the
process assumes one of the values

0, £1, £2, 43, ..., £2¢,
i.e. the number of multiples is increased by one in comparison to the preceding

method, but in return the number of additional adders for forming the multiples of
the multiplicand is reduced to 2q--2_ 1

The decoding rules are illustrated by table 4.3.1 (q = 3).

Table 4.3.1.

Png)& X . P-(}lu X Pu;}!} KX L (%3 X
TPy TpyRosd TPy rpynsl
0000 0 0100 2 1000 | —4 1100 | —2
- 0001 1 0101 3 1001 | —3 1101 | —1
0010 1 o110 3 1010 | —3 1o | =i
| 0011 2 0t 4 1011 | —2 1 0
Key:
1., Digits of group
8
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4.3.2 Method of Multiplication from Low-Order Digits of the Multiplier

In decoding the next group of digits of the multiplier by this method, an analysis
is made of q next digits and one binary digit of the "carry" £rom the preceding
(adjacent low-order) group into the given one. Let us designate this digit by the
letter e. The weights assigned to the individual digits in the process have the
following values: R

9 digits
X X X...XXe

20-120~-229-2 2t 20 20

4 In other words,' the digits of the multiplier have natural weights, and the weight
of the digit e is equal to one. The factor K in the multiple of the multiplicand
. KC, used as the next partial product, is selected from the 29 values

0, £1, £2, +3, ..., £ (29-!'—1), 27!
in such a way that there is produced the relationship

K+429¢'=S,

where e' is the digit, selected simultaneously with K, of the "carry" into the next
(adjacent high-order) group of digits of the multiplier (e'= 0 or e' = 1), and S is
the sum of the weights of the nonzero digits of the decoded group of digits of the
multiplier together with the weight of the nonzero digit e, The number of addi-
tional adders for forming the multiples of the multiplicand in the process, as in
the preceding method, is equal to 2q—2_ 1

One of the possible rules for decoding one group of digits of the multiplier for
the case of ¢ = 3 is shown in table 4.3.2.

Another alternative for decoding for the case of q = 3 was offered in work [2]
(see table 4.3.3).

Table 4.3.2

Digits . X o Digits . X o

of group £ group
000 0 0 0 000 | | | 0
001 0 1 0 001 i 2 .0
010 0 2 0 010 1 3 0
o1l 0 3 0 1]1] 1 4 0
100 0 4 0 100 t |3 1
101 0 -3 i 101 I 1 =2 |
! 110 0 -2 | 110 1 |-l 1
11 0 —1 1 1t 1 0 |
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Table 4,3.3.
- Digits . K e ||:Digits. ¢ X o
of group pf group
000 0 0 0 000 1 1 0
001 0 1 0 001 1 -2 0
010 0 2 0 110 1 3 0
011 0 3 0 011 | 4 0
100 0 4 0 100 1 =3 i
101 0| =3 1 10t | 6 0
- 110 0 6 0 110 1 | —1 1
111 0| —l1 1 11 1 0 1

As can be seen, the number of multiples used in both cases is 8, but the multiple
6C emerges in place of the multiple =2C. Other versions of decoding rules can be
suggested too.

Among the possible alternatives, a certain advantage is possessed by those in which
e' = 0 is produced when the high-order digit of the group being decoded equals zero,
Such, din particular, are both versions shown in tables 4.3.2 and 4.3.3. 1In the pro-
cess, when the groups are formed in a way such that there is always a zero on the
left in the high-order group, it is thereby possible to avoid a carry from this
group, i.e. avoid the necessity of forming yet another partial product. Therefore,
the parameters n, m and q must be associated by the relationship

(m—1)g<n<mg—1.

- The right and left boundaries of the inequality correspond to the following ver-
sions of subdividing the multiplier into groups of digits:

g q q
: AN TTNTTN
' OX ... X X e . XX X . X . X

1 m

- ' q
% X X X
As in the preceding method, the number of groups of digits of the multiplier (num-
ber of partial products) is equal to

10 .
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_ Table 4.3.4.

Characteristics of method 1 u m

Number of multiplicand o 241 o0
- multiples required

Number of additional
adders required

1
Relationship between m= ]—'1-[ m= ]ﬁl[ m= ]i[
n, m and q

Shown in table 4.3.4 is a comparison of the methods just discussed for speeding up
- multiplication, in the use of which the multiplicand is multiplied at once by a
group consisting of q digits of the multiplier. The numbers I, II and III desig-
- nate: I —- the method using only positive multiples of the multiplicand (section
4.2); II and III -~ the methods using not only positive, but also negative
multiples (sections 4.3.1 and 4.3.2 respectively).

To illustrate these methods, let us show how multiplication of some multiplicand C
by multiplier A, equal to 0.101100011 (n = 9), is performed by all three methods
when q = 3.

- In the first case, subdivision inté groups and decoding would be such:

0, 101100011
t 43

and the multiplication would actually be performed in three cycles the foliowing
way: »
. CA==3C2-*44C2-*45C2-2,

In the second case, the subdivision might be such:

000011008118

1 -2 -4 3

and there would be four cycles:

CA.= 3C2-'—4C2-*—2C2-1+1C2°.

In the third case, let us subdivide the multiplier the following way:
: 000, 10110001t T

N S e e
T 34 3
and there would again be four cycles
CA==3C2-%+44C2-°—3C2-*41C2°,
11
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In comparing the merits and shortcomings of all three methods, it should be noted
that

with n, a multiple of g, multiplication by methods II and III requires execution of
one more cycle than is the case in using method I;

to implement methods II and III, substantially fewer additiomal addefs are required
than that for implementation of method I;

the number of multiplicand multiples for methods I and III is one less than for
method II; and

in contrast to method III, methods I and II are suitable for application in array
multipliers (see section 4.4), since all groups of digits of the multiplier can be
. decoded simultaneously when they are used.

Thus, each of the three methods has certain advantages that favorably distinguish
it compared to at least one of the other two methods.

: As another illustration of this group of methods, let us consider a possible hard-
ware implementation for multiplication with the parameters n = 8 and q = 3 which
implements method III (£fig. 4.3.1). Version "a" of the circuit for non-fast

~

[

(5) re-cin —

4

f 0 AR ¢))
I ] {7
3 KM I
M,

L]
10
(| Demsc ) rec
Fig. 4.3.1.
Key:

1. Sm3C -- adder 3C 5, Rg-SdA ~- register-shifter A
2. RgC -- register C 6, Dsh -- decoder
3. Km -- switch 7. T -~ flip=-flop
4, Sm-Rg-Sd -- adder-register-shifter ‘

multiplication was chosen as the "prototype" of the device. (see fig. 7.7.1, a, page
337 [not reproduced]). In our case (fig. 4.3.1), the first cycle of multiplication
begins with the decoding of the three low-order digits of the multiplier A located
in the register—shifter. If among these three digits there is at least one "one,"
then the decoder Dsh produces one of seven control signals +1, -1, +2, -2, +3, -3
or +4 {the number of signals is indicated in the corresponding positions in fig,
4.3.1 in brackets) and the carry signal e' (the signal e in the first cycle equals
- zero). The control signal generated passes through the switch Km into the 10-digit
accumulating adder-shif ter as the first partial product the corresponding multiple
of the multiplicand C f£rom the register RgC or the adder Sm3C, which even before
the start of the first cycle calculates and stores the 10-digit triple multiple 3C
(let us number the digits of this number from 1 to 10). If, for example, the three

12 .
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low-order digits of the multiplier equal
101, then the signal e' = 1 is generated
and stored in flip-flop T and there is

generated the control signal -3 which rp;il:: ok

passes through the switch Km the number i"t-z—r—J &

3C in inverted code (one of the 10 digits . t2— &

of the switch is shown in fig. 4.3.2). ?4-2-— el L

The partial product is added to the con- =1 =]

tents of the adder (when the first cycle e b | B diglt of the
is executed, the contents equal zero) and = 3 (=1, 2, c0vy 10)
the sum.is stored. At the end of the ) “*4—- & » S ’
cycle, there is a shift right three posi- '

tions in the adder and in the register

for the multiplier. In the process, the

three low-order digits of the product Fig. 4.3.2.
move from the adder into the freed high-

order positions of the register for the

-multiplier. The second and third cycles are executed similarly, but there are no

shifts at the end of the third cycle. The cyclic carry circuit ey is used in the

adder during addition. Among the other details, one tould note that the circuit in
fig. 4.3.2 changes slightly for the extreme digits of the switch, since it is
necessary to consider that c, = 0 when 1 = 9 or 10; ¢ 9" 0 when 1 = 1 or 10; and
i~ 0 when 1 = 1 or 2,

4.4, Analysis and Technique of Building Simultaneous Multipliers
4.,4,1, Classification of Simultaneous Multipliers

It was already mentioned at the beginning of this chapter that the modern computer
spends a considerable portion of its time on performing multiplication. In a num-—
ber of developments of new machines, the arithmetic unit is being freed from many
trivial operations, which leads to an increase in the percentage of time spent on
multiplication and division. The arithmetic unit of such a machine spends about
half of its time on these two operations. Nevertheless, the capacity of the appara-
tus in the machine for these operations is rarely great. In major computing systems
and digital computers, the situation often occurs in which to improve the overall
economic indicators of the system with large storage and high-level peripherals and
control, it is advantageous to increase the outlays for multiplication and division
even higher than the level in which the outlay increment yields an equal increment
in the speed of multiplication and division. Simultaneous multipliers (OU) are
among the means of this type of speeding up. ’

The main feature of simultaneous multipliers 1s that execution of multiplication in
them is a unified, continuous, complex, transient process of simultaneous addition
of all partial products, which is not divided into smaller time intervals by clock
signals as is done in multipliers of any other type.

Assume that it is necessary to form the final 2n-digit product of two n-digit fac-
tors and that additional multiples of the multiplicand are not used.in the multi-
plier (use of these multiples was covered in sections 4.2 and 4.3). Then the total

13
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number of digits in all addends (partial products) equals n2. We shall see later
that with the variation of the value of n, the quantity of apparatus in a simul-
taneous multiplier of a given type varies approximately in proportion to n2, There-
fore, the application of simultaneous multipliers has been called in work [3] the
method of the second order of speeding up multiplication.

It has been suggested [4] that the classification of simultaneous multipliers be
based on dividing them into array simultaneous multipliers and compound simultan-
eous multipliers (fig. 4.4.1). Array simultaneous multipliers [4-29] contain
about n? elements of the same type (for example, one-digit binary adders), connect-—
ed to each other by a given method, which add up all the partial products. If
additional multiples of the multiplicand (see sections 4.2 and 4.3) are used, the
number of adding elements is reduced accordingly and a decoder for the multiplier
and assembly for forming the necessary multiples of the multiplicand are incorpor-
ated into the device.

Simultaneous array multipliers may in turn be divided into homogeneous and hetero-
geneous, Simultaneous homogeneous array multipliers belong to the class of devices
often called iterative arrays and are a set of identical elements that form regu-

_ lar network. Because of the homogeneity of the structure and adherence to the
principle of "shorter-range interaction" of the elements, the application of these
devices is very promising in high-throughput large and medium-size computers,
developed on the base of the modern technology of manufacture of integrated cir-

- cuits, A large number of iterative arrays has now been developed that are multi-

- plying, dividing [22-24, 31-34], adding and other calculating assemblies; among the

- latter can be noted circuits for calculating the square root [34~36], for multiply-
ing and dividing a binary number by a constant [37], for squaring {38], for convert-
ing a number from the binary system to the decimal [37], etc. Homogeneous array
simultaneous multipliers [1, 4-16, 22-24] also contain elements of the same type
connected in a regular way. Heterogeneous array simultaneous multipliers {1, 4,
13-21] lack this regularity,

I (1) UdnomaxmHsie ymHoMument ]
Mampuywsie 0Y Cocmabnsie 0Y
- (2) 3
54) (5)aanopodusie (6) oy (7) oy
eoDropodHere Mampuynsie ucnons3yrwujue ucnonvsyrouue
Mampuymsie 0y . MampayHeIe donzoBpEmennsie
0y {umepamudnsre oy 3y
cemu )
. MHOZOCNOUHBIE MOMPUYHBIE 03, ucnons3yrouyue nepemnomument
- (8 0y Q)  /Mabnuvnoag muna
Fig, 4.4.1.
Key:
1. Simultaneous multipliers 6. Simultaneous multipliers using array
2, Array simultaneous multipliers simultaneous multipliers
3. Compound simultaneous multipliers 7, Simultaneous multipliers using read-
4. Heterogeneous array simultaneous only memory
multipliers 8. Multilayer array simultaneous multipliers
5. Homogeneous array simultaneous 9. Simultaneous multipliers using
multipliers (iterative arrays) tabular type multipliers
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A large group of heterogeneous array simultaneous multipliers is made up of the
_ so-called multilayer structures [1, 4, 13-21] that are distinguished by the short
time needed to form the two-digit code of the product (see section 4.4.4).

Compound simultaneous multipliers are synthesized from simultaneous multipliers
with smaller digit length: array (4, 27], tabular or are small read-only memory
devices [25, 26] that calculate the products of the separate parts of the multipli-
cand and the multiplier. The interconnections between the "olementary" simultane-
ous multipliers in the compound simultaneous multiplier can be made by one or
another method and, in particular, as the single-digit adders are connected in the
homogeneous or multilayer simultaneous multipliers; the simultaneous multipliers
thus obtained can be called macro-homogeneous, macro-multilayer, etc.

Simultaneous multipliers are now ever more often finding application in the arith-
metic units of digital machines. In a number of cases, the same array unit is used
not only for multiplication, but also division [22-24]. As large computing systems
are developed in which the proportion of the arithmetic unit is not large compared
to the rest of the apparatus, the application of simultaneous multipliers will pro-
bably increase. Also used in many cases are non—full arrays that simultaneously
add several, but not all, partial products [27, 39, 40]. These devices were
discussed earlier (section 4.1).

Simultaneous multipliers can be built, generally speaking, from various elementary
cells. Simultaneous multipliers in which the main type cell is a single-digit
binary adder with potential elements have become widespread. In what follows, we
will have in mind the simultaneous multipliers containing such adders.

A large number of circuits for single—~digit adders are now well known. In the sub=-
sequent points in this chapter, it will be shown that the speed of the entire
simultaneous multiplier may essentially depend on the choice of circuit for the
one-digit adder. Therefore, it is advisable to consider the possible structures

of an adder from the viewpoint of their effect on the properties of the simultane-
ous multiplier.

In arithmetic units not using array circuits, signal delay time in carry circuits
of one-digit adders has a far greater effect on device speed than delay time in
adding circuits. In devices using array adders, the total time for the multiplica-
tion operation (and cther operations in the performance of which the array takes
part) essentially depends also on the speed of the adding circuits of the one-digit
adders. For this work, it is convenient to introduce in the discussion the ratio
of maximal delay time in an adding circuit to the maximal delay time in the carry
circuit of the one-digit adder.

Some circuits of one-digit, coincidence-type adders are showm in fig, 4.4.2, One
can see from an examination of them that the maximal delay in the carry circuit
tauE, generally speaking, is not equal to the maximal delay in the adding circuit

add”

 some constant. However, for the majority of practical applications, we can limit
the examination to two basic cases: k =1 or k = 2. In the first of these, we
will call the adder "simultaneous," and in the second case--"two-cycle."

tau It can be assumed that in the general case, tau g4 = k'tauE, where k is

15
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Fig. 4.4.5: One-digit, coincidence-type adder circuits

Key: ]
E = carry circuit Cm = Sm = add circuit

Let us call the tau_ delay a "time step" and assume that it is identical for all
adders (in this casé, the term "time step" [takt] has no relation to the phrase
"simultaneous multipliers" [odnotaktnyye umnozhiteli]). The value k =1, as a
rule, pertains to the adders (fig. 4.4.2, a-d) in which the add and carry signals
are generated independently of each other, although the input part of these two
circuits may be common (fig. 4.4.2, 4). Such adders require paraphase input sig-
nals, and consequently, if we want to use them in an array, then the outputs of
these adders must also be paraphase. The case k = 2 pertains to adders in which
the add signal is generated by using the carry signal (fig. 4.4.2, e and f). Such
adders do not require paraphase Input signals and are therefore, as a rule, more
economical. The carry signal code in these circuits is inverse to the code of the
addends, while in circuit 4.4.2, e, the add signal is-also.inverse in relation to
the inputs. The circuit for a binary, one-digit adder has the so-called property
of self-duality which means the inversion of all input signals leads to inversion
of output signals. This property is reflected in fig. 4.4.2, e and £, by the
superscripts in parentheses and will be used from here on.
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of 3

The main merits of simultaneous multipliers are high speed, simplicty of control

circuits and ease of adjustment and finding defects,

The progress of microelec-

tronics and, in particular, the evolution of LSI circuit technology has permitted

countering the main shortcoming of these devices--large amount of apparatus,
experience of the evolution of Soviet and foreign computer technology in recent

years shows that the use of simultaneous multipliers is becoming an important

means for raising the throughput of computing resources.

h4oh.2.

eous Array Multipliers

The

Analysis of Processes of Adding Partial Products in Homogeneous Simultan-

For types of circuits for 12-array simultaneous multipliers are shown in simplified

form in fig. 4.4.3.

Each small dot in the figure represents a one-digit, binary

adder; the add signals are directed from the top downwards; the carry signals are
directed from right to left, from right upwards to left and from right downwards to

the left.

the adders pertaining to one digit form a vertical chain and the connections
between adjacent positions have a regular nature. Thus, the structures shown are
iterative arrays. :

Often combined to reduce the quantity of apparatus are the application of the
method for speeding up multiplication that is being investigated and the method for

17
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speeding it up, described earlier, that consists in decoding groups containing

q digits of the multiplier each, and in using preliminardily computed multiples of

the multiplicand. Therefore, in fig. 4.4.3 for each of the four types of arrays

are shown three circuits corresponding to the versions of multiplication in which

each partial product is obtained through multiplication of the multiplicand by

q digits of the multiplier (q = 1, 2 or 3). In doing so, it is assumed that when

q = 2, the multiples 0, 1C, 2C and 3C are used (i.e. there is an additional adder

to calculate the triple multiplicand in the arithmetic unit), but when q = 3, the

- multiples 0, 1C, 2C, 3C, 4C, 5C, 6C and 7C are used (i.e. there are adders to com~
pute the values of 3C, 5C and 7C). When q = 2 or q = 3, other multiples could be
used too: For example, in multiplying by two digits, one could use the multiples
0, 1C, 2C, -1C and -2C, and in multiplying by three digits——the multiples 0, 1C,
2¢, 3C, 4C, -1C, -2C, -3C and —4C. In the process, the number of additionmal
adders is reduced, but there emerges the apparatus necessary for input of the
negative partial products. But basically the structure of the array and its
properties are preserved.

Paspady Digits

{ 2 3 4 «.om? n-l n n¥ M M4 .. 03 I 0
! 12 12 12 12 12 12

Jmamxu J,evels

The array multipliers in fig. 4.4.3 were presented, as noted, in a somewhat simpli-
fied form--not shown in particular are the circuits that form the partial products;
also not shown are the inputs through which the partial products go in; both the
adders and the half-adders are depicted in identical fashiom, etc. The nature of
the simplifications can be seen by comparing the type III circuit shown in the
first column in fig. 4.4.3 with the same circuit shown in more detail in fig. 4.4.4.
In the device shown in fig. 4.4.4, n partial products with n digits in each are
added together. The numbers of the partial products are entered near the arrows
indicating the position of input of the individual digits of the partial products.
The one-digit adders and half-adders are shown as squares.

The circuits in the second and third columns in fig. 4.4.3 are shown for n, a multi-
ple to two and three, respectively. If this condition is not met, then the number
of levels of the adders turns out equal, respectively, to the values n/2-1 and

- n/3-1 rounded to the next larger integer. The structure of the device and its
properties in the process are essentially unchanged.

18
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The assembly for forming the partial products is not shown In either fig., 4.4.3 or
fig. 4.4.4. In the simplest case (q = 1), this assembly contains n? two-input AND
circuits that form n2 signals ascy (=1, 2, ceepyn; 3=1, 2, ..., n) where a;cy

are the digits of the cofactors. The signals generated (simultaneously) are binary
numbers which are in the digits of the partial products (n products for n digits).
Arranged under one another in accordance with the weights of the digits, thgse
partial products form an array almost coincident in form with the arrays in fig.
4.4.3 in column q = 1. Now each dot represents one digit of one partial product.
(One can say that with that in the figure there is not shown only the low-order
partial product in the digit positions from (n + 1) through 2n inclusive.) For the
simultaneous multiplier to "start working," there remains only the superimposition
of the array of partial products on the array of adders, i.e. the connection of the
outputs of the AND circuits with the corresponding free inputs of the adders. In
the process, it is evident that the digits in one column of the array of numbers
can be fed to the inputs of the corresponding column of adders in any order, i.e
the digits in the column can change positions.

1f q is greater than 1, the number of partial products is reduced q-fold (when n is
a multiple of q), and each of them is lengthened from n to n + q digits. When q is
equal to 2 or 3, the simultaneous multiplier assumes the form shown in the corres-
ponding position in fig. 4.4.3. An example of a complete type II simultaneous
multiplying circuit (it can also be considered a type IV circuit) for the case
n=26and q=2 is shown in fig. 4.4.5, in which besides the array of adders itself,
also shown are the additional adder to generate the triple multiplicand, and the
circuits for forming the partial products. The blank rectangles in this figure
represent one-digit adders and half-adders. A type I device (q = 2) is described
in work [1], page 451. There too are complete simultaneous multiplying circuits of
type I, q = 1 (page 438); type III, q =1 (page 445); type IV, q = 1 (page 448) and
others. :

It can be seen from figs. 4.413 = 4.4.5 that a final 2n-position product is formed
at the outputs of the simultaneous multiplier. : ’

Not shown in these figures are the additional inverters needed to "phase" the sig-
nals when using the adders shown in fig. 4.4.2, e and f, since in arrays of this
type there may be encountered not only normal, but also inverted signals.

Let us discuss the conditions under which such a necessity occurs. For this, let
us note first of all that any of the structures shown in fig. 4.4.3 may be divided
into parts, each of which consists of three or four one-digit adders conmnected to
each other "in a ring" (fig. 4.4.6). Let us first discuss a ring of four &dders.
It is easy to be persuaded that, as shown in fig. 4.4.6, a and b, the two upper
adders of this ring must be built with the same circuit conforming to either fig.
4.4.2, e, or fig. 4.4.2, £ (for simplicity, the adders in fig. 4.4.6 have been
designated with the letters e or f), and each of the two lower adders may be built
with either of these two circuits. Thus, such a ring may be built with adders of
either type e, or type f, or with both,

However, a ring of three adders may be built without additional inverters only if
type f (see fig. 4.4.6, c) circuits are available to the developer. But if only
type 'e adders ate on hand, aif additional inverter (fig. 4.4.6, d) must be installed
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In

Fig. 4.4.5. Example of complete type II simultaneous multiplying circuit for the
case n = 6 and q = 2.

in the ring for "phasing." In the figure, this inverter is included in the add
circuit, but obviously instead of this, it can be included in either of the two
carry circuits forming a "triangle" together with the indicated add signal.

It should be noted that the consideration relative to the impossibility of building
an array with type e adders without using additional inverters pertains not only to
the structures shown in fig, 4.4.3, but also to any array in the circuit of which
there can be singled out at least one closed circuit, formed by one-digit adders
and the add and carry signals that connect them, in which the number of adders
would be odd., It is also evident that such circuits exist practically in any
array. However, their number 1s different in different types of arrays. It can be
deduced from fig. 4.4.3 that type I and III arrays contain the minimal number of

- such circuits ("triangles"). For the case of q = 2, this number equals (n - 4)/2,
and for arrays II and IV--respectively, (3n~6)/2 and (5n-20)/2; when q = 3, arrays
I and III contain (n-6)/3 "triangles" each compared to (5n-18)/7 and (7n-36)/3
for arrays II and IV, When q = 1, arrays I, II, III and IV contain, respectively,
n-2,a-1,n-2 and 3n ~ 8 "triangles."

20
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- It is evident that the additive inverters must be installed in auch a way that the
"phasing” of the signals in the adjacent circuits is not disrupted and wherever pos-—
sible, the speed of the array is not reduced. Direct analysis shows that the first
of these two requirements can easily be met for all the circuits shown in fig. 4.4.3
by having the number of additive inverters equal the number of "triangles." How-
ever, it will be shown later that to meet the second requirement, the number of
additive inverters may have to be increased.

Let us move on to an analysis of the pro-
cesses for determining the solution in
homogeneous array simultaneous multi-
pliers [9].

It was mentioned earlier that summing the
partial products in a simultaneous multi-
plier in the general case is a complex
transient process. During the flow of
this process, the signal at some point in
the device may be switched several times
from one level to another before the
final, correct value is obtained. The :

presence of intersecting flows of signals Fig, 446

limits the possibility for additional

speeding up. In some arithmetic units,

we also have to reckon with the fact that

besides the loss of time on the transient process that occurs after the feeding of
the partial products, there are also losses of time on decay of the processes in
the array after all input signals are removed. The decay time is less than the
addition time, but it also can be, as will be shown in section 4.4.3, rather long.

The time for performing multiplication in an array multiplier depends on the array
circuit, the parameters of the elements used and on the values of the cofactors.
There are at present no simple methods for precisely estimating the maximal operat-
ing time in the various simultaneous multipliers. Therefore, we will estimate the
speed of arrays "from above," assuming the transient process flows the "worst" way.
The speeds of the arrays shown in fig. 4.4.3 may be compared by a techaique based
on the following two assumptions.

1) Let us assume that all the partial products are fed into the array simultaneous-
ly at a moment in time t = 0. (In reality, this condition is not met due to
scattering of the parameters of the elements of the preceding assemblies, delays of
signals in the conductors, etc. Also, for arrays using additional multiples of the
multiplicand that are generated by additional adders, this condition cannot be met
since the very generation of multiples takes some time and the low-order digits of
the multiples emerge before thehigh-order ones. In an actual device, it is advis-
able to make these additional adders fast, but only te the extent that the full

time of operation of the arrays depends only on its structure, but not on the
additional adders.) ‘

2) Let us also assume that from each one-digit "ewo-clock-period" (simultaneous)
adder, the correct carry signal is emitted in a “"clock period," and the sum signal
within two "clock periods" (within one "clock period") after all three terms are
fed to the inputs of the adder.
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By this tcchnique, one can build 24 timing diagrams corresponding to 12 structures
of arrays shown in fig. 4.4.3 and to 2 values of magnitude k (k = 1 or k = 2).

General expressions for the coordinates of the characteristic points of these dia-
grams were derived on the basis of the diagrams,

Five of these diagrams are shown in figs. 4.4.7 - 4.4.11,

The dots indicate the

moments of establishment of correct signals at outputs of sums of all adders of the
arrays. , For clarity, diagrams corresponding to specific values of n are shown; how-
ever, the exact formulas given in the figures for the coordinates of the character-
istic points of the diagrams correspond to any value of n (however, with the
restriction that n is considered a multiple of q).

The diagrams obtained correspond
to the hypothetical "worst"
transient process, from the
viewpoint of speed, and make it
possible to estimate "from the
top" the actual processes
occurring in homogeneous array
simultaneous multipliers.

Thus, it can be seen from fig.
4.4,10 that

1) the carry is propagated
"slowly" along each level until
the (n + 1)-th bit (the passage
of the carries is delayed by
the sum signals coming in from
above), after which the passage
continues "quickly";

2) the full time of operation
of thig array is 3n - 3 "clock
periods™;

3) after 2n - 3 "clock periods,"
the transient process decays

in the entire circuit, with the
exception of the adders located
at the 2 ... n digits along the
lower edge., This means that
having built the circuit for
fast passage of carries along
the indicated adders, one can
reduce the full time of operation
of the device from the magnitude
3n - 3 to the magnitude of the
order 2n - 2 "clock periods."
Building fast circuits in other
places of the array to further
reduce the full time would
require hardware investments
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that are too great. It can be seen
from the figure that t = 2n - 3 1s
the time for forming the two-row code
of the product, i.e. the time for
forming the two numbers whose sum is
the product sought. '

All 24 timing diagrams are consoli-
dated in the table shown in fig.
4.4.12, Some simplifications were
made to pick out the main features
of the diagrams: sections of the
diagrams that correspond to the pro-
cess of establishing the signals in
the main mass of th adders are showm
in the form of circuits; the pro-
cesses of carry passage along the
lower edge of the array are repre-
sented by a separate line., On the

pasprds) Digits
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2% 2

coordinate axes are shown (with a
precision to several "clock periods"
and bits) the coordinates (time and romanDigite
number of bit) of the characteristic points of the cir- ! IV, g=1, kst
cuit (it is assumed the coordinates of the characteris- § .:.. =17 .
tic points are indicated for n —>»©09 ) and the full ‘

array operating time T is indicated precisely.

Examination of these timing diagrams allows making
the following conclusions on the properties and
features of the homogeneous array simultaneous multi-
pliers in question.

i

1) Changing the array structure type, the type of one- .
0 4 & 2 06 0 2% 25

digit adder or the parameter q may considerably change
the timing diagram.

Fig, 4411

2) In a number of cases, passage of the carries can be

speeded up along the entire lower edge of the array ,
(for example, in ecircuits II and IV when q = 3), and in other cases, this can be
done only in the high-order n digits (in arrays II, III and IV when q = 1); and
finally, it is practically impossible to organize any speeding up for structure I,

3) Under otherwise equal conditions, type I arrays are slower than any others. It
is practically impossible to speed up type I arrays since passages at all levels
would have to be speeded up for this.

These diagrams allow selecting the optimal variant of a homogeneous array multiplier
and the circuit for a one-digit adder. However, in the process a number of other
circumstances must also be considered; these can not be analyzed in general form

because of the large number of possible situations. The basic circumstances are the
following:
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1) System of elements used. The type, speed, reliability, load capacity, dimensions,
cost of various elements available to the designer, and the very fact of availability
or lack of a particular element may affect the choice of an array circuit.

2) Standardization of building blocks, e.g. LSI circuits into which the array and
the entire arithmetic unit are "subdivided."

3) The necessity in certain cases of incorporating additional inverters for "phasing"
of signals into the array circuit.

4) Use of the array during other operations. This may be especially important. 1f,
for example, nonrestoring division has to be performed in the array, type I and II
arrays cannot be used since they do not provide the capability of shifting the next
remainder. A type III or IV array can be used to implement this method of division,
The first of these is best suited when the next remainder has to be obtained in a
one-row code, and the second--if the remainder is formed in a two-row code. If

. division is to be implemented by using one of the methods using multiplication (sec~
tion 5.3), then generally speaking, any type of array is suitable.

These timing diagrams of homogeneous array simultaneous multipliers make it possible

- to select positions for installing additional inverters (needed for "phasing" sig-
nals when type e one-bit adders are used) so that the speed of the array is not
changed. A comparison of the circuits and diagrams allows concluding that in all

- circuits except three (II, q = 2; III, q = 2 or 3), one can install inverters in a
way such that their quantity equals the quantity of "triangular" circuits and in the
process, the delays introduced by the inverters are not reflected in the value of T,
In the three cases mentioned, the additional inverters should be installed as shown
in simplified form by the X's in fig. 4.4.13. In doing so, the quantity of inverters
must exceed the number of "triangles" (see table 4.4.1) so that the inverters are
not located in “"critical" paths of signal propagation.

o

It can be seen from table 4.4.1 and the timing diagrams

in particular that when q = 2 and type e adders are

used, array III, with the same speed as arrays II and m
IV, and better speed than circuit I, contains consider- : ==

IS
IS

ably fewer additional inverters. Type ILI arrays were L 9=z

first described, apparently, in work [10]. B I o2
) §=

4.4.3. Analysis of "Decay" Processes in Homogeneous T T ‘

- Array Simultaneous Multipliers AV E X -

1f another--simpler and quicker--operation (additiom, o, g=3

for example) is performed in an array after multipli- : .

cation, and if in the process the pause between the ‘ Fig, 4413

end of the multiplication and the beginning of the

next operation is less than the signal "decay" time

in the array, which occurs after setting all input

signals in the array to the zero state, then the

decay time must be taken into account when calculating the time for performance of
the next operation. When necessary, hardware means for protection form this effect
have to be used. For example, using a special signal, one can "disconnect" the out-
puts of the upper levels of the array from the lower level, in which an addition-
subtraction operation can be performed.

25.
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Table 4|4n1v

Number of
Type of ;"Triangular"| Number of
Array Circuits ‘Additional Inverters
|, q=-| n—2 n—?2 — e
—4 —4 1
- n— n—4 Rishre
1
—6 n—=6
I, ¢g=3 e 5~ 5
- I, g=1 n—1 n—1 g
In—6 Tn— 18 13
", =2 l"'—h] .
9 2 4 17 E
5n— 18 5n—18 H
I, ¢g=3 ——— —— 2 $ )
25 -5
H, g=1 n—?2 n—2 2 ].nH
n—4 n—12 i+l [
et , <
B n—6 20— 12 n [n 3
n, ¢=3 —5 3 %6 [GD 0 4 8 W N me
IV, g=1 an—8 n—8 ' Feg, 44.14
51— 20 Sn— 20 | L FEE T
I IV, ¢=2 —— 5
Tn— 36 7n— 36
v, ¢=3 —— 3

Therefore, the study of the decay processes in array simultaneous multipliers, just

as the of the processes of establishing the solution, has definite value. The prob—
1rm of analysis of the processes of decay, apparently, was stated for the first time
in work [41]. '

Decay processes may be examined by a technique based on the following assumptionms.
1) All partial products become equal to zero simultaneously at the moment t = Q.

2) From each one-digit binary adder, the correct carry signal (zero) is emitted
within the "clock period" after two correct (i.e. zero) signals of the terms are
fed to the input, and the sum signal (also zero) is generated with the "eclock peri-
od" after all three (zero) terms are fed. '

These rules are common to "simultaneous" and "two-clock-period" adders. The validi-
ty of this statement follows from an examination of the circuits shown in fig. 4.4.2.

Following this technique, timing diagrams were built for all the arrays shown in
fig. 4.4.3, and precise formulas for the coordinates of the characteristic points of
these diagrams were derived {41]. One of the 12 diagrams is shown in fig. 4.4.14.
It corresponds to the specific value of n = 19, but the formulas are valid for any
n greater than 1.
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e mn e nm P ....‘r . -

These diagrams are consolidated in simpli- &xné g~ 4*
fied form in fig. 4.4.15 in a general OzEk:q

table, as was done earlier for the proces— 24,
ses of establishing the solution. Indica-
ted in the figure are the precise values T
of the full decay time Tz and the approxi-—

|
3 N o

mated values of the coordinates of the
characteristic points (as above, the pre-
cise formulas ate replaced by approximated
only for clarity).

NE

T

It can be seen from an examination of the
timing diagrams that decay occurs slower /4
in type I arrays than in the other three
types. When q = 1, arrays II-IV have 2 .
practically identical rate of decay, but ! n
when q = 2 or 3, decay occurs somewhat 1

i
faster in arrays II and IV than in the n
type III array. It is also evident that 7
- the decay process cannot practically be IF tnb
speeded up.
L]

n

=+l

The diagrams of decay, just as the dia- n
grams for establishing the solution, can
be used to select a type of homogeneous 1
array and a one-digit adder circuit. They
make it possible to select the necessary .
measures of protection in those cases when ¥ |n n n

[ ]

Ty=n

presence of decay leads to reduction in
speed of the arithmetic unit.

n en ¥ o

0 2n

NS
<
Nix

It should be noted that the time of one ,
"clock period," adopted in this chapter Fig, 4415

as the unit of measurement of time, al-

though it was defined as the maximal time

of delay of the corresponding element, in reality can be equated to the value, only
somewhat exceeding the average time of operation of this element. This is explained
by the fact that in the long chain of serially connected elements, the probability
of large deviation of total delay from the value equal to the sum of the average
delays is very insignificant. This feature of "single-pass" (simultaneous, noncyc=
lic) arithmetic and other devices in general and of adder arrays in particular pro-
vides for, in essence, additional speeding up of their operation and raising of
reliability [1, pp 442-443].

N 4.4.4. Multilayer Simultaneous Array Multipliers

1°. Let us call multilayer that array simultaneous multiplier, built with one-digit
binary adders and half-adders, in which there is at least one one-digit adder or
half-adder, into the inputs of which are fed the output signals of the sum of two or

three other one-digit adders. In other words, in a multilayer array simultaneous
multiplier, the one-digit adders pertaining to a given position of a device, are not

27
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stretched out in a chain, as is done, in particular, in the homogeneous structures
discussed in sections 4.4.1-4.4.3, but form a certain ramified "tree."

One c0u1d suggest quite a few structures of simultaneous multipliers that fit this
definition. We shall discuss just some of the most well known structures.

Let us analyze some general properties possessed by the majority of multilayer -
structures discussed in this book [46].

Let us assume that a simultaneous multiplier consists of a series of serially con-
nected layers: the output signals of an i-th layer are the input signals to an
(i + 1)-th layer (i =1, 2, ...). The N1 numbers go from the preceding, (i - 1)-th

layer to the inputs of each i-th layer. The apparatus of the i-th layer processes
(adds) by certain rules common to each layer these numbers and generates n, othex

numbers that go to the next (i + 1)-th layer. The sum of the numbers present at
the inputs or outputs of any layer equals the same value--the product of the initial
cofactors A and C.

We shall see subsequently that in many multilayer simultaneous multipliers known and
discussed below, the function n, = f(ni-l) satisfies the following five conditionms.

Condition 1. For any positive integer n there is a corresponding unique positive

i-1
integer n,, i.e. the function n; = f(ni—l) is single-valued,

Condition 2.

n<ne-y when M-1>2 (i=1, 2, )

(i.e. when more than two numbers enter the inputs of any layer, fewer - numbers than
those that entered the inputs result at the outputs of this layer).

Condition 3. O (net+ D) —~F (3is) (Remr=1, 2.)

(i.e. the quantity of n, numbers at the outputs of a layer cannot decline when the

quantity of n; g numbers increases at the inputs of the layer).#*

Condition 4.

i(nl~.,+l)—f(m_,)<1 (ﬂf._|=‘-=|, 2, )
Condition 5. For any number N, no matter how large, there exists such i, that
n;>N ~when all >Nt In other words, limn, =o0,
By %

*
It is assumed that a change in the quantity of numbers at the inputs of a layer
is accompanied by a corresponding rearrangement of the apparatus in the layer.
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We shall see later that these conditions are met not only in multilayer simultaneous
multipliers built from one-digit adders, but also in simultaneous multipliers built
from parallel counters * (see subsections 4°, 5°,-9°, 10°, 11° and 12° of this sec-
tion), short-bit parallel adders (section 6.3.1) or from special translators of
N-bit code into two-bit code (section 6.3.2). '

Let us examine several general corollaries stemming from the fulfillment of the
above five conditions and thus relevant to all the multilayer simultaneous multi-
pliers just listed (as well as to all the simultaneous multipliers that can still be
suggested and developed and in which the conditions listed are also met).

Corollary 1. It follows from conditions 1 and 2 that the quantity of n, Dyy eoe

until the first of them satisfies the inequality 0
H(S .

Let us designate the number of this term b¥ the letter M. Lef us assume that the
simultaneous multiplier contains M layers. * Thus, the initial n = n0 numbers are

sequentially translated ("removed") M times so that there are satisfied the
inequalities L

e>m>ne> ... Shy_1 >0,
n>2 when i<M; ny<<2.

Corollary 2. It folows from condition 1 and corollary 1 that for any n, there is
_ a corresponding unique M, i.e. that the fumction M(n) is single-valued.

Corollary 3. The function M(n) is non-decreasing, i.e. M(n')<<M(n"), if n’>n'.
This follows from corollary 1 and condition 3. In fact, when n increases, not one
of the values N5, Ny, ... cCaN decrease and, consequently, M cannot decrease.

Corollary 4. When n increases by one, the quantity of layers either does not
change or is increased by one, i.e. M(n+1)—M(n)<l1.
This follows from corollary 1 and conditions 3 and 4.

Corollary 5. The number of layers M can be as large as desired: lImM=o0
(from corollary 1 and condition 5). a-+c0

* We call a parallel counter (k, m) an assembly that adds k binary digits of the
same weight (let us assume the weight equals 1) and generates their -sum in the form
of an m-bit binary number. Since the maximal value of this number is 2™-1, then m
is the smallest integer solution to the inequality om_it.

A particular case of a parallel counter is the counter (3, 2) which is a well
known one-digit binary adder.

%% .
We assume that n, is greater than 2,

29
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Corollary 6. For any integer non-negative M, there is some maximal value n which

we shall designate in the form nM) ., In other words, nM) is the maximal quantity

of humbers that can be contracted into two-digit code by using M layers. Corollary
B} : 6 follows from corollaries 4 and 5.% Let us note that n(0)=2,

Corollary 7. From corollaries 3 and 6, it follows that  n™-V<aM (T=1,2,..).

0 1) ()

Thus, the numbers n , D , N » ++. form an ascending sequence.

Corollary ‘8. It follows from corollaries 3, 6 and 7 that when n=3 M(n)=T , if

nrN<nn™ (T=1, 2, ...). This means that the quantity of layers of simultaneous
multipliers when any p>3 can be determined, after selecting from the series of

numbers n(O), n(l), .. the two adjacent numbers n(T—l) and n(T) that satisfy the
given inequality. Then M(n)=T. We will often use this technique later. If there
is known the time taui of operation of any i-th layer and if tau1=tau2= e =taqu

tau, then the value of M defines the time of operation of the entire device from
the moment the n=n, initial numbers (partial products) are fed to the inputs of the

first layer to the result of the two-digit code of the product; this time equals
M tau.
(T

- _.(T-1)
Corollary 9. If n,_,=n7, then n.=n .

In fact, since in this case n, numbers

are contracted T-1 layers, then owing to corollary 8
-0 < <m0,
If it would turn out that ny<<n™-) then when n g increases by one, n, would

increase by no more than one (condition 4), and would become equal to n',, the
inequality

' n(T'2)<n'¢<n(T"‘)
would be met and therefore n'i numbers would be contracted T-1 layers. But this
would mean that n(T)+1 numbers were contracted by T layers which is impossible.
Therefore, ni=n(T_%).
(T-1)

(T)

use this possibility for computing values of n "',

Corollary 9, in particular, means that if n,=n , then max(ni_1)=n(T). We will

* :
Fulfillment of condition 5 is necessary since if it were not met, i.e. if there
were such X and such ny 4= ¥, that ni’-‘x when all n, = , then when all n>d n

would equal X, and M would equal some constant maximal value ﬁ'(i.e. corollary 5

would not exist). niih M)

In the process, would equal infinity, and n when M>#

would not exist (i.e. corollary 6 also would not exist).
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Using corollary 8, one can write the following system of inequalities:

M- M —2 .
A" M<n,<n™, M P <a™, L,

M—i—1 . M—i . )
n' ‘<n<n™ L 0% n,  <n',
R ) —
ny, = n® -— 2_

Tt is evident that if we construct some i~th layer not in accordance wiﬁh the func—~
tion ni=f(ni_l), but some other method, but so that in the process the inequality

N -0 & e (M- is not violated, then the total number of 1ayérs M does not
change. We will use this possibility later to modify the methods under investiga-
tion for constructing multilayer simultaneous multipliers.

2°. The first of the multilayer simultaneous multipliers that we shall discuss is
organized the following way [1, p 454]. '

Let us subdivide a set consisting of n initial terms (partial products) into non-
intersecting groups of two numbers each per group. The number of such groups (let
us call them full) is equal to [n/2]; in addition, with an odd n, there will be one
more group not full that contains one number. In each full group, let us add the
two numbers by using the usual parallel binary adder with serial propagation of the
carries., Let us not translate the number that has fallen into the group not full.
Needed for translation, evidently, are 1ambdal=[n/2] parallel adders, the aggregate

of which let us call the first layer of the device. Let us consider as outputs of
the layer the [n/2] numbers obtained at the outputs of the adders and the number
in the unfull group that, thus, passes through the layer without translation. The
quantity of nuy numbers that end up in the unfull group, evidently, is equal to

n-2{n/2]. It is evident that nuy equals 0 or 1. One can state that in the first

layer n=n_, numbers by using 1ambdal parallel adders is translated into

n,=2, + v, = [92.”] +n,— 2 [-';—.-]=Il.— [12"}
numbers. Each i-th layer is constructed similarly, i.e.

n,m1,+v,=n,_,-—[%:-']. (4‘“)

0

Here lambda, is thé number of parallel adders in the i-th layer.

A graph of the function ni=f(ni_l) is shown in fig. 4.4.16a (p 203). The continuous

line shows the part of the graph that is later periodically repeated (broken line).
It can be seen from (4.4.]) and the graph that with this method of constructing a
multilayer simultaneous multiplier, all the conditions listed above (conditions
1-5) are met and therefore all nine corollaries are valid. The structure of such a
simultaneous multilayer multiplier is described by the relationships

ny=24; v 1:==[2%§L]y

vi=n_, —2, ny=2 j—1,2,.., M (442
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n;' o
2 P .
o o o

-0—0-9-0—0-0—
_ 0 2 4 ngq

a) nM=2, 4, 8, 16, 32, 64 b) nt1=2, 3, 4, 6,9, 13
c) nM=2, 3, 7, 15, 35, 80 d.) =2, 3,7, 22, 78, 288

Iﬂ-l.

|

- *0-0-0-0-00-0-0-0-0

""Z/H'/
e) nN=2, 3, 7, 1272%—1 £) nM=2, 3, 5, 9,17, 32 (when
2,!:1...__1 k=8)

g) n'T=2, 8, 32, 128, 512, 2048
(wherr ¥=8)

Fig. 4.4.16. Type assembly: a) and b)--counters (3, 2); .c)=-~counter (7,3);
d)--counter (15, 4); e)=-counter (k, m); f)—k-bit adder;
g)--translator N—>2. T =0, 1, 2, 3, 4, 5.

.32

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2

FOR OFFICIAL USE ONLY

The sum of the two numbers obtained at the outputs of the last, M-th layer, as
stated earlier, equals the product of AC.

It can also be seen from (4.4.1) that with the given n, the maximal value of By :

i is Zni. Therefore, from corolldry 9

M= 2n®h (T=1,2, ...).

Since n(o)=2, then n(1)=4, n(2)=8, cesy Lee, o L e
a0 =9M+ (M=0, 1, ...). (4.43)

The first six numbers of n(T) are given in fig. 4.4.16, a.

Since for any n there is such T, that

AT =9T < nL 2TH =n(T),

then from corollary 8, for this n there is an M = T.
In other words,

M=1logan{—1". (4.4.4)

. ‘
]d[ designates the smallest integer not less than d.
For example, when n = 48, M = 5 (since. n"=32<<n<64 =h(k’).

The relationships (4.4.3) and (4.4.4) fully define the direct dependency between
the number of terms n and the number of layers M, and the inverse dependency be-
tween the number of layers M and the maximal number of terms n{t), .

Since each parallel adder reduces the quantity of numbers being added by one, then
the full number of these adders equals M
2 ’-‘ = — 2.
=1 - - - e .
Homepa ‘pospadesNumber of the
Shown in fig. 4.4.17 is the location of ! 5 w5 W Bits
the numbers at the inputs and outputs of T
the layers of the simultaneous multiplier
- of the type under consideration for the
case n = 12; also shown in the drawing 1s
" the procedure for completing addition of
the two numbers, after which the final
product is obtained. Each dot in the
figure represents a binary digit. The

initial array A of the numbers is trans- @
lated by the first layer into the array B;

array C is obtained after the second layer, @
then D and, finally, the result E. Each "’I‘, ~

&

rectangle in the figure encloses the
numbers being entered to the inputs of i
one parallel adder. The horizontal lines . Fig, 44.17

m"“".?
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connect the output digits of each parallel adder. Let us assume that the last
adder that translates array D makes up an additional, (M + 1)~th layer of the de-
vice., It can be seen from the figure that there are 1i parallel adders and 146
one-digit adders., It can also be seen that the maximally full operating time of
this device is ST o :

(M+1) veut (2n—2) te=1logon teu+ (2n—2) 1z,

where tausum and tauE are respectively the time for forming the sum digit and the

carry digit in a one-digit adder. In fact, the second layer begins operating

within tauE + tauSum after the start of operation of the first layer (let us ignore

the time for forming the partial products), the third layer——within 2 tauE+ tausum’
and the fourth--within 4 tauE + tausum. By this time, the carries will actually

pass through 1 + 2 + 4 low-order positions of the device (from the 2n-l-th to the
_ 2n-8-th). 1In the last layer, the carries pass through the positions left before
- the first position. In addition to the delays associated with generation of the
carries, there is also the delay tausum in each layer.

It can be seen from fig. 4.4,17 that this simultanecus multiplier (and the figure)
was constructed actually according to the following rules,

1) The initial array of terms (partial products) is shown in the form of a
parallelogram., The rows of digits obtained at che outputs of each layer are shown
in the figure one under the other in the same order as the rectangles reflecting
the corresponding rows of apparatus (in this case--parallel adders) at the

inputs of the layer. .

2) The quantity of n, numbers at the outputs of each i-th layer is defined by the
function ni=f(ni_l); however, the quantity of digits at the outputs of one position
is n, only in some middle positions of the layer; in the extreme positions due to

the restricted length of the terms, the number of digits at the outputs is less
than n,. ‘ )

i
3) One can state that the apparatus (adders) were installed at first as if the
terms were infinitely long numbers, and then taking into account the actual width
of the terms, all "superfluous" assemblies (one-digit adders) were removed from
the circuit, i.e. those parts of the apparatus that had no effect at all on the
position of the significant digits at the outputs of the layers.

One can note that these rules clearly define the structure shown in fig. 4.4.17.
Let us call this structure "basic." Later we will often encounter various "basic"
structures of simultaneous multipliers that differ from each other only by the
fact that some other type assemblies will be installed in the layers instead of
binary adders.

Let us also note that after changing the formulated rules, other structures can

be constructed too (with the same function of ni=f(ni_1)). For example, if the
first of the three rules is removed, one can obtain a set of ‘structures, one of
which is shown 1in fig. 4.4.18. In the process, the number of layers M does not

change.
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3°, In accordance with the remark
made at the end of subsection 1°,
one can modify somewhat the design
of the device just discussed,
after preserving the same number
of layers M=]log no[—l. Let us

T 5 w5

try, for example, to reduce to 4 @

the maximum the number of parallel ==

adders in the first layer. Since =

there must be met the inequality * p

AM-D Ly < M), (44.5) f e
S p

the number of adders lambda1 = ’ E:::::::::fi cves

[n0/2] can be reduced to the 2
value .

Von g My oMy gllodinel— Fig, - 4418 Fig, 44.19
i L] . i [ ] =% .

These lambda'l adders add in
pairs the 2 1ambda'1 numbers,
and the remaining n0—2 1ambda'l numbers pass through the layer without translation,

Obtained then at the outputs of the first layer are

; =N+ (ng—2M\'\) =niM-1=2M

numbers, which corresponds to the right boundary of the inequality (4.4.5). The
remaining layers must be constructed according to the old rules, i.e. lambdai =
[ni_1/2] (i=2, 3, ..., M). It is evident that in the process

. n M= o
Il.:—z-'-=n.( 2’::2" lg l.=n”

My (M) __ (M2
ny=t=n"=2"" 3, =n,

. s e 8 s 4 s s 0 8 8 s e s s s e

Ny
ny= %ﬂnl')_——_—z 1M=2.

The number of layers M, as we see, i1s retained. It is interesting that the number
of parallel adders in this case also does not change:

(ng—2M) 4-2M-1 - 2M-24" || ‘4 2l=po—2. "

Shown in fig. 4.4.19 is the modified structure for the case n = 12. A number of
features of the new structure can be seen from fig, 4.4.19 in addition to that

n, = n(3)= 8 (in contrast to n, = 6 in fig. 4.4.17), n, = 4 and ng = 2. The rules

1
by which the new structure was built can be formulated the following way.
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- 1) The'apparatus is installed in a way such that the quantity of digits nJi at the

outputs of each j-th position of each i-th layer meets the inequality ni<ntM D,

2) In each layer are installed only those assemblies (one-digit adders in this case)
the removal of any .one of which would lead to nonfulfillment of the requirement

WM,

3) The assemblies in the layers are used the "maximal" way (as many inputs of these
assemblies as possible are fitted; in fig. 4.4.19, it is shown in particular that
even the input of the carry of the low-order position of the parallel adder is
used).

Let us call the device built by these rules "economical." It can be seen from fig.
_ 4.4.19 that in this case, the "economical" simultaneous multiplier contains just
as many layers (4) as the basic, and just as many parallel adders (11), but the
quantity of one-digit adders has declined considerably (132 instead of 146). More-
over, device operating time has also been reduced. It can be seen from the figure
that now it is ’ ’ T ’
. (2n—2)tr yhen TE=>Tcm,
fecm = sm = sum)
(2n—4)te+2tcm when TE<ten.

We shall encounter later also the "economical" structures. From corollary 8, the
"economical" modification can be built for any simultaneous mu ltiplier meeting
conditions 1-5.

It can be noted that the formulated rules for building the "ecomomical" circuit
allow different structures, i.e. the simultaneous multiplier structure is not
unequivocally defined.

Besides the basic and the "economical," many other modifications could be suggested,
but we will not do this.

Given in table 4.4.2 as yet another example are the values of n  and lambdai of the

i
basic and "economical" structure of the type of simultaneous multiplier under dis-
cussion for the case n0=48.

The main shortcoming of both modifications of the device in question consists in it
being inexpedient to make a fast adder of the last, M + 1-th layer, since the carry
propagation in it is nevertheless delayed by the adders of the preceding layers.

- We observed a similar situation in homogeneous array simultaneous multipliers of
type 1 (see fig. 4.4.7).

4°, This shortcoming stems from the fact that within each layer carries are propa-
gated from low-order to high-order positions., Later we shall investigate a series
of structures for simultaneous multipliers in which high speed is attained because
there are no carry propagation processes within layers. But first let us describe
a structure that can be considered one-layer and which In a certain sense is the
source for all subsequent modifications, This simultaneous multiplier is a chain
of 2n-1 serially connected parallel counters (k, m). In each position of the de=-
vice there is one parallel counter that adds all the digits of the partial products

36
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2

FOR OFFICTAL USK ONLY

relevant to a given position (i.e, up ton digits), and besides that, the carries
coming from some counters located in the lower—order positions of the device {21].
Such a simultaneous multiplier for the case n0=12 is illustrated by figs. 4.4,20

and 4.4.21; shown in the first one are several low-order positions of the device,
and in the second——-the arrangement of numbers at the inputs and outputs of the
counters. In fig. 4.4.21, the outputs of each counter are connected by a slanting
line. It can be seen from the figure that the most complex counter——(15, 4)--is
in the 13th position. There are 2n-1 counters. .

7 5§ 0w 5w

es2eve000 a0y
seecoe 0o
ee0 e s 0000

® S0 ® o0 b oo

40 000 0s 00 0

A 200 s o0 e 0o 0

ess e s 0000 bto e

s0ssm se 0 s

eoeo s

o ® 00

Se0vese e 000

00008000 00

(1) Mepenocsr u3 wonowox
@) Mampuysi A
o Npousbedekue . .
a u un Bnu (3)I{Mu£gcmﬂa Bxoded 2356789UNRZIBNISHIBNNIET 42
(1) Homepa paspriol cvemyuxol :
Fig, 4.4.20 Fig, 4441
Key: Key:
1. Number of the positions 1. Carries from columns of array A
) 2. Product

3. Number of inputs of counters

- This type of device has a simple structure but substantial shortcomings: the
parallel counters with a large number of inputs are complex circuits and carry
propagation along the chain of counters takes much time.

5°, Now let us move on to multilayer structures in which there is no carry propa-
gation within layers. Let us change the preceding device [21]. Let us formulate
the product in two stages—-first we obtain the two-row code of the product, i.e.
the two numbers whose sum is the product sought, and then we add these two numbers
in a fast adder.

In each of the M layers of the device that forms the two-row code of the product,
in one position will be no more than one parallel counter (k, m), There will be
no connections between counters within a layer. Let us comnect the layers serial-
ly, just as before. If only one digit enters the input of a given layer in some
position, then it will pass through the layer without translation (two digits in
one position will also not be translated if in each of the lower-order positions
at input of this layer there will also be no more than two digits).

Such a device for n=12 is illustrated in fig. 4.4.22, in which, as in fig. 4.4.21,
slanting lines connect the output digits of the individual parallel counters. It
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Table 4.4.2.

SIROUOMINILOC® B moulmnm

Ocoowioe Oy | y ‘ Ocuoproc OY ‘
O ¢ S ) N (1) @
N e | M
0 L] 48 3 6 6 8 8
| 24 24 16 4 3 3 4 4
2 12 12 5 2 1 2 2

Ib RU

- Key:
1. Basic simultaneous multiplier 2. "Economical" simultaneous multiplier

can be seen from fig, 4.4,22 that the device contains 3 layers in all; array A is
translated into array B, then B into C and finally, C into D. It is evident that
the maximal number of inputs of one counter in such a device is n.

It follows from the description of the method for constructing the layers that for
a gievn n g there 1s an ng that is the smallest integer that satisfies the

inequality n

2t —1>n,_,.

Hence it follows that
E = [logy m_,]+1. (44.7)
A graph of the function n =f(ni 1) is shown in fig. 4.4.16e (p 203). It can be

seen from the description of this depend?nci that in this case too conditions 1-5
are met. Since max(nl_l)—n(T) when n, ;T (corollary 9), then there is

derived from (4.4.7):
" =log, (2 4 1),
~ i.e. . - (=)

=g 1, (4.48)

(T)

Several of the first values of n
given in fig. 4.4.16e.

» computed by using relationship (4.4.8), are
- From corollary 8
= T when n(T-N<agn™,

For example, M = 3 when n = 48, since _
M=7<<n<127=n®,

The sequence of numbers 0, for this example has this form: 48, 6, 3, 2.
It is evident that when this method is used, n(T) increases rapidly with the

increase of T. For real values of n, the number of layers does not exceed the
- value 2-3.
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It should be noted that prior to the appearance of work [21], this method of adding
sets of numbers was suggested in [42] In a more general form for number systems
with the arbitrary base r. A table of values of n(T) for r = 2 was given in [42].
This same table in [21] contained a number errors: :

7

for 0, n™® ana 0, 15, 32 and 64 vere indicated instead of 127, 2'27-1 and

6°. The method just described provides for a very small number of layers, but
parallel counters with up to n inputs are needed to use the method. When n is
large, such assemblies are bulky. Therefore, it is advisable to consider methods
that allow using parallel counters (k, m) with limited k.

One of the earliest works in this field was [42] by V. M. Khrapchenko; he described
a method of fast addition of a large number of numbers with the base r by using
identical parallel counters (k, m), each of which adds k base-r digits of equal
weight. This method was developed independently of works [19 and 43] and is a
generalization of the idea advanced in them. Multilayer array simultaneous multi-
pliers, built with counters (k, m), with different k, were also investigated in
works [17 and 21] and in a number of later publicationms. .
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Let us begin with the case k=2 and r=2 (subsequently in this section we will be
talking about binary addition only). The use of the counters (2, 2), i.,e. binary
half-adders, when n =3 and n=4 is shown in figs. 4.4.23 and 4.4.24, It is evident
that when n=3, the device contains one layer, but when n=4, four layers. Just as
in the preceding case (fig. 4.4.22), within each layer of the device that forms
the two-row code of the product, there are no connections between counters, The
difference is that now. in one position of one layer there can be several counters
(when n=4, there are two counters each in the 5th position of the lst layer and in
the 4th position of the 2nd layer).

In investogating the structure when n is larger, one can be assured that the number
of layers in a device built with counters (2, 2) by this method is approximately
3.7n-10.4.* Such devices, of course, are too slow.

7°. Let us go on to the case of k=3, By now there have been a considerable number
of suggestions for methods of building multilayer simultaneous multipliers with
counters (3, 2), i.e. with one-digit binary adders. Let us look at one of the
earliest proposals [17 and 18]. '

Shown in fig. 4.4.25, taken from work [21], is the arrangement of numbers at the
inputs and outputs of each layer of the suggested device for the case of n=12,
The principle for building this simultaneous multiplier is as follows.

Positioned in the first layer of the device are lambda.=[n/3] rows of one-digit
binary adders. Accordingly, n initial terms are divided into non-intersect-
ing groups: 1ambda1=[n/3] full groups of 3 numbers each and one unfull group con-—

taining nu,=n-3{n/3] numbers (nul=0, 1 or 2). Each of the lambda, rows of adders

1 1

adds the 3 terms of the corresponding full group (each such triad of numbers in
the figure is enclosed by a rectangle) and produces two numbers--a series of digit
sums and a series of cascaded carries, i.e. the three-row code is translated into
two-row. At the outputs of the first layer there is formed the n, -row code, and

1y =20+, =2[116/3] -+ no—3[10/3] = no— [o/3]

(nu, terms of the unfull group pass through the layer without tramslation). In

1
fig. 4.4.25, 1ambdal=4, nul=0 and n1=8. The lines connecting the output digits of
the one-digit adders that add two digits each and therefore can be replaced by
half-adders are crossed out by short lines in this and the following figure.

Arranged in similar fashion in the second layer are lambda2=[nl/3] rows of one-

digit adders. The second layer replaces the nl-row code by nz—row, and
Ng=— 2&2 +vg,
where vy=n—3hs. In fig. 4.4.25, M=2, vp=2, ny=6."

*
The error of this empirical formula when n is less than or equal to 80 is no
more than +1,8, The formula M=20-2 from [21] is incorrect.

40

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2

- FOR OFFICIAL USE ONLY

Each i-th layer is built by the same method, i.e.
ni=2Ai+vi= 2[!1(.4/3] + (n;-.— 3[”(—1/3]) =n;_,--[m..|/3] . (449)

The graph of the function ni=f(ni-1) is given in fig. 4.4.16b (p 203). From
the graph and (4.4.9) it is evident that conditions 1-5 are met. The structure of
this simultaneous multiplier is described by the relationships .

ny==2hi+Wi, xf= [ni-1/31,
vi=ni_—3M, nn=2, 1=1,2, ..., M.
, the maximal value of ni_l=n(T) is obtained, evidently in the case
when the layer contains lambda=[ni/2] rows of adders, i.e. for each pair of numbers

When ni=n(T—1)

at the outputs of the layer there are 3 numbers at the inputs of the layer. 1In
the process, nu = ni-2 lambda numbers (nu = 0 or 1) pass through the layer without

translation. Therefore e

" =314 v=3 [i‘;__'.’]+(n(f—n _9 [n_";_"])__: "l(r.'_'b; [L";_"] ' ‘(4'.4' 10 :

Using this relationship, one can calculate the sequence of values of n(T); the
first few are given in fig. 4.4.16b.

Just as before, M = T when nW’”;:ns;n”L ' (4AJI)

For example, M = 9 when n = 48, since o
n®=42<n<63=n.

> The sequence of numbers of n, for this example can be determined by usihg formula
(4.4.9): 48, 32, 22, 15, 10, 7, 5, 4, 3, 2.
It is pointed out in work [44] that when this method is used =~ =
M= log, | (4.4.12)
z

or

M=]log:_—g—[ 41N (4413)

Comparing (4.4.12) and (4.4.13) with (4.4.4), we see that the number of layers is
increased considerably, but it should be considered that the delay in each layer
is now equal only to the time of operation of one one-digit adder.

Concerning the structure of the simultaneous multiplier corresponding to fig.
4.4.25, one can note that it belongs to the class of "basic" structures since it
was built by the rules given at the end of subsection 2° of this section.

8°. Let us describe an "economical" modification to the device just discussed

[21]. 1In accordance with the rule given in 3°, first let us_ put in the first
layer not lambdal=[n0/3] rows of adders, but lambda'l-no-n(M‘l) rows, Then

ny =2K,| + (ﬂo—3l’|) =niM=1),

*
]Jd[ is the smallest integer not less than d.
41
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In each of the remaining layers, just as in the preceding device, the number of
rows of adders will be lambdai=[n /3]. With that, as noted earlier,
-1
o (M-2) (M-3) = (0)_
n,=n » sees My=D =2.

maximally contract from both sides (until further contraction would lead to the
derivation of an n, greater than n ‘1)). Fig. 4.4.26 shows the structure of such

an "economical" simultaneous multiplier (n=12, as in fig. 4.4.25). It is evident
from the figure that now installed in the first layer of
the device are just those one-digit adders, the lack of
any one of which would cause the quantity of numbers n,
(M-1)_

R n3=n Second, each row of adders in each layer will

- at the outputs of the layer to be greater than n

n<4)=9. In the process, the one-digit adders are replaced
by half-adders (marked by small lines) where possible.
Similar measures are also taken in the remaining layers.,
In comparing the last two figures, one can see that the
quantity of layers in the "economical' device is the same
as in the preceding, but the volume of apparatus is less.

It can be shown that the "economical" simultaneous multi- ':5??4720%0%'
plier of this type contains (n-1)(n-2) one-digit adders -

L CECECE
(R
and half-adders. This value is the minimal for any — c

simultaneous multiplier built of such assemblies and SRR s
forming the two-row code of the product. 1In this case ?:%4%%%26’..?

(fig. 4.4.26), this qunatity is 11 x 10 = 110, i.e. 26

fewer than in the preceding device. ﬁ?ﬂ&%ﬁm&?ﬁﬁﬁﬁk’

£

It should be noted that prior to the appearance of work '20%020M&%42b2¢?
[21], practically the same method for comstructing multi- .
layer simultaneous multipliers with counters (3, 2) was Fig, 44.26

described in work [17]. The main difference is that a
"truncated" device containing n basic and several addi-
tional positions was discussed in {17].

*
9°. Let us now assume that counters (7, 3) and (3, 2) [21] are available to the
developer. Each layer will be built by a method which to a certain extent is
similar to the preceding one. In each i-th layer, let us put lambdai=[ni_1/7] rows

of counters (7, 3). One such row translates 7-row code into 3-row. The remaining
"i-1_7 1ambdai input numbers of the i-th layer either pass through the layer with-

out translation (when ni_l—7 1ambdai is greater than or equal to 2) or are trans-

lated by yet another rowof counters (when n, -7 lambdai is less than or equal to 3),

i-1
It is evident that when n; ,-7 lambda, = 3, two-row code is formed at the outputs

of this additional row of counters, and three-row code when it is greater than 3.

*
The availability of counter (3, 2) in the process does not change the essence of
the problem, since it can be replaced by the counter (7, 3); generally any counter

(kl’ ml) can be replaced by counter (kz, mz) when k2 is greater than or equal to kl

(zeros are fed to the k,-k, extra inputs, but of course the counter (k,, m.) is
2 1 1’ 71
simpler than (k2, mz)).
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The graph of the function #=f(n.i) is given in fig. 4.4.16c (p 203). It
follows from the description of this function that conditions ‘1=5 are met. The
structure of the simultaneous multiplier is described by the relationships

ny=3\i+vi, Mi=[ni-4/7],

., — T when #y-,— 72, <2,
v,={9 when 7,.,—72,=3, (44]4)
3 vhen n,_,—72,>3,

ny=2,i=1,2 ..., M.

In accordance with corollary 9, the maximal value of gy =niT) when v"‘"—j’_fa_"
is obtained, evidently, in that case when the layer contains A =[ny/3] TOWS

of counters (7, 3) and V= [(n—3V) /2] rows of counters (3, 2) (lambda" = 0
or 1), but v==m—3\—2)\” numbers pass through the layer without translation (y = 0

or 1). In other words, for each triad of numbers at the outputs of the layer
there are 7 numbers at its inputs; if the quantity of n—3)’ numbers left is 2,

then for them there are another 3 numbers at the inputs of the layer, but if
m—3N=l, then the corresponding number has passed through the layer without
translation., Thus, B
| AT =TA + 3N +v, M= [nT-1/3],
A =[(nT-V—31"} /2], v=n{T-N—

—W—-2" T=1, 2, ... (4.4.15)

The first few numbers of n(T), derived by using these relationships, ai'g givén in
fig. 4.4.16c¢c.

Just as before, M=T whem?!™"<n<n™, ‘ :
For example, M=5 when n=48. The sequence of numbers n, for this example can be
derived by using (4.4.14):

48, 21, 9, 5, 3, 2.

In comparing the values of n(T) in figs. 4.4.14c and b (p 203), we see that now
when n is greater than 4, there are fewer layers in the new device.

Let us note that one could put in each i-th layer only lambdai=[ni_l/7] rows of
counters (7, 3), and the remaining n 1_7[ni-1/7] numbers would pass through the
layer without translation. For a structure of this type, n(T)=7[n(T—1)/3] +
(1)

(n(T—l)—3[n(T-1)/3]) and therefore the sequence of numbers n 0 , 0, +.. would

*
change, Condition 3 is not met in the new structure, i.e. n, can decline as

*

It is possible that the author in work [21] had precisely this method of con-:
structing simultaneous multipliers in mind, since in it instead of .(5)_=80 the
value 79 is indicated. n ?
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n increases, because of which the quantity of layers M can be greater tham in

the structure just described, but the volume of apparatus--less. Such structures
can be suggested also when other type assemblies are used-—counters (15, 4) (see
subsection 11° of this section), k-bit adders (section 6.3.1), translators N—~-2

(section 6.3.2) and others. Such structures in translators N—-2 are discussed
in work [45].

10°. Similar to the way this was done in subsections 3° and 8° of this section,
one can build an "economical" multilayer simultaneous multiplier with the counters

(7, 3) and (3, 2). In such a device, after the first layer are obtained
=n(M-l) numbers, after the second-—n2=n(M_2) etc. For example, if n=48, then

n1=35, n2=15, n3=7, n4=3 and n5=2.

The basic and modified ("economical") simultaneous multipliers for the case n=12

are illustrated in the figs. 4.4.27 and 4.4.28 respectively. It is evident that
there is less apparatus in the latter devicg.

1§ w5 2

1 5 14 15

A

MW’T '
I
‘ B @ es e ° ol ﬂ | @
(e h‘/fWﬁ,ﬂ- X
OSSPl ) @ Vlceceicezeceeeesa b *
Fig. 4.4.27 Fig.. 4.4.28

11°. Let us now assume that a multilayer simultaneous multiplier is buillt from the
counters (15, 4), (7, 3) and (3, 2). Discussion similar to the preceding leads to

7 the formulas ny =40+ v, A=(n,_,[15], !
7 Ill_|‘—]51‘when Il,_,—-151,<2,
— 2 when ny_y— l5ll=3,
V=l when 3<n,_, — 152, <7, | (44.16)
4 when n,_, —152,>7,

’lM=2, izl, 2....' Ml

4

. [n(r—n ] [n"""—4A'-BA"]
= A 5 )

(t—1)
P 15T B2y, 2= [ 2 ]

ve=n TV, T=1,2,... (4417
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[Pl

‘The graph ol the lunction ui=t(ni_l) and the first few values of n(T) are shown in
fig. 4.4.16d (page 203). Conditions 1-5 are met. It is evident from fig. 4.4.16d

that when  16<n<22, 36<<n<78, n»8l , there are fewer layers in this device
than in the preceding one built from qquq;ers,(Z,Ag), For example, when n=48,
there are 4 layers (since 22=n®<48<<n®=78).

From (4.4.16) for n0=48 we obtain all remaining values of n,: n1=14,'n2=4, n3=3
and n 4=2 .

12°. When counters (15, 4) are used, just as in the other caggglwpngmggg_build
"aconomical® simultaneous multipliers in which
m=nM-0 (I=],2,... M).

Another two methods of building multilayer array simultaneous multipliers will be
discussed in sections 6.3.1 and 6.3.2 in chapter 6. By the first of these methods,
the multiplier is made with large-scale integrated (LSI) circuits, each of which
is a k-~bit binary parallel adder. The second method calls for using LSI circuits,
each of which is a small-bit converter of N-row code into two-row. Despite the
difference in the element base, the structures of the simultaneous multipliers in
both these cases are related to the structures discussed in this section. Use of
the k-bit adders and the N—>2 translators is reflected in fig. 4.4.16g (p 203).

Aside from the methods depicted in fig. 4.4,16, there are also others. For exam-
ple, in work [47], there are discussed multilayer simultaneous multipliers in
which the type assembly is an adder that adds r k-bit binary numbers and produces
their sum in the form of one d-bit number (such an assembly can be made in the
form of ROM containing

Zrk-numbers of d bits each). It is suggested that such r and k be chosen that d
is a multiple of k. A chain (series) of such adders translates the group of r
multibit numbers into s numbers, and

d=sk, r=Qus~hA L s~y 1],

The graph ni=f(ni—1) for this simultaneous _

multiplier is shown in fig. 4.4.29 (the i

case selected is r=9, k=3, d=6 and s=2). ‘ rg!

It is evident that condition 3 is not met sl yd “

if r-1 is greater than s (it is met only rd \
when r=3, k=1, d=2 and s=2 which corres= 35 s v
ponds to the method reflected in fig. 23
4.4.16b (p 203) and which is thus a
particular case of the methods

discussed in [47]. r 2r R )

s

Fig. 44.29

*
Relationships (4.4.16) and -(4.4.17) are given here for the first time. In work

[21], 21, 61 and 226 are erroneously indicated for n(3)’ n(4) and n(S).
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5. High-Speed Synchronous Devices for Division

Until recently, there was less development of methods for speeding up division com-
pared to those for addition, subtraction and multiplication. This is apparently
due, on the one hand, to the "sequential®™ nature of the procedure for conventional
division (the next digit of the quotient can not be selected and the new remainder
cannot be computed until the preceding remainder is derived and analyzed) and, on
the other, to division being a relatively infrequent operation. In some digital
computers, direct performance of division is "avoided" by using standard subrou-
tines that include multiplication and addition-subtraction. However, division is
now included in the 1list of operations of almost all modern general-purpose ma-
chines and the necessity of speeding up division follows from the very existence
of the very efficient methods for speeding up multiplication: a non-fast operation
for division makes no sense when fast addition-subtraction and multiplication are
available since in this case the division subroutine may afford greater speed than
the hardware solution. It must be noted that in recent years there have appeared
- a number of new, powerful, synchronous methods for speeding up division and the
development of new methods is continuing, The main known methods are discussed
in this chapter.

Synchronous methods for speeding up division are conveniently classified into two
groups: speeding up division in each cycle of which one or more digits of the

- quotient isselected and the new partial remainder * computed, and that which
"avoids" division by using multiplication or another procedure.

Methods of fast division, performed by a conventional circuit—-analysis of the re~
mainder and divider, determination of the next digit of the quotient and computa-
tion of the new remainder--may also be divided into two groups,

The first includes methods using algorithms under which changing the sign of the
remainder as a result of the next cycle of division does not lead to the need for
returning to the preceding remainder. These methods for speeding it up are called
nonrestoring division methods (section 5.4). As these methods evolved, they were
cnriched with new ideas such as using a redundant set of digits for advance forma-
tion of the quotient, deriving the next remainder in the form of two-row code and
using arrays of adders.

Methods in the second group return to the preceding remainder after the remainder
sign is changed, i.e. they restore it (section 5.1),

Of the methods that perform division by "avoiding" it, we shall discusz= iterative
methods that use multiplication (section 5.3) and the group of methods suggested
- by Stefanelly (section 5.2),

*

From now on, let us call the unshifted partial remainder simply the remainder and
designate it by Bi; the dividend and divisor will be designated by the letters A
and C respectively,

46
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5.1. Methods of Fast Restoring Division

The main way to speed up restoring division consists in advance formation of
several multiples of the divisor and in the simultaneous production, during one
division cycle, of the several differences between the (shifted) remainder and each
of the several multiples. Analysis of the signs of the differences produced allows
deriving in the process several digits of the quotient at once. As an example, we
can cite the division method [1] in which in each division cycle there are computed
three differences: ABi-C, ABi-ZC and 4Bi-3C. By the signs of three differences

derived, it is easy to determine the quaternanry (i.e. two binary) digits of the
quotient. One of the differences or the value of ABi becomes the new remainder.

When, for example, 4B—2C >0, 4B—3C<0, then it is evident that the
digit 2 (i.e. 10) should be written to the quotient and Bi+1=4Bi-2C.

It is seen that this group of methods actually performs restoring division.

Some speed-up in conventional restoring division (with definition of one binary
digit per cycle) is made possible by an additional adder [2]. 1In one version of
this method, the additional adder repeats the operation of the main adder and "lags
behind" it somewhat. If in the main adder there 1s derived a 2Bi—C less than O,

then a zero is written to the quotient, and the additional adder, which at this
time contains the value of 2Bi, becomes the main one; a new shift is made in it and

a new cycle begins: 2B, X 2 = 2B ., 2B, ,~C etc. In the process, the main adder
becomes the additional, and in it the remainder is restored: (ZBi-C) +C= ZBi,

ZBi X2-= ZBi+1'
behind" the main one. If in the main one there is produced a ZBi-C less than 0,

In another version of the method, the additional adder also "lags

then 0 is written to the quotient and the number ZBi from the additional adder is
added to the main one: (ZBi—C) + 2Bi = 4Bi-C, i.e. the remainder ZBi is restored
at once, it is doubled and a new cycle is performed: ZBi+1—c. In the additional
adder at this time, the number is doubled:

2B X 2=2B41;

if it again turns out that the number in the main adder is negative, the procedure
is repeated.

Restoring division can also be speeded up by making a device for division in the
form of an iterative array. Such devices were already mentioned in section 4.4.1
(see [22-24, 31-34]) of chapter 4.

A
For example, the device described in [3] consists of ¢ l
identical elements, each of which (fig. 5.1.1) performs the P : ‘ e
function of a one-digit binary subtracter (when D=0) or I F
the function of a one-digit switch (when D = 1)*, 41
£) 4
Fig, 5.1

*1In 511 F=D, R=C, P—=AC | AG4CG, S=AD-} ATCD+
-{—/ICUD4§I%%D+ACGD. R=C A6+ Ab

47

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP32-00850R000400070026-2



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400070026-2

FOR OFFICIAL USE ONLY

In the first case (D=0), the result of the subtraction is sent to the output S, in
the second (D=l)--the digit of the minuend (digit of the preceding remainder). The
entire circuit consists of layers (fig. 5.1.2), in each of which the divisor C is
subtracted from the doubled preceding remainder coming from the outputs of the pre-
ceding layer. Along the layer in the process, the signals P and G of the borrow
are propagated (see figs. 5.1.1 and 5.1.2). The borrow signal in the high-order
position of the layer determines '
the sign of the difference ZBi-C

(and the next digit of the
quotient) and controls the
generation of the signals S in

all elements of a given layer.
Fig. 5.1.2 "describes" the
example of the division of A=0.100
by C=0.101, by which there is
derived the quotient Q=0.11001 and
the remainder B6=0.11; the precise

relationship between A, C, Q and B

6
in this device takes the form :
A B
N
c 2

In this device, division is
speeded up not by complicating the
algorithm, but by use of high-speed [HE = NE = NOT gate]
miniature elements connected by

short regular bonds.*

Fig, 5.12

5.2. Stefanelly Methods

Stefanelly methods are based on several algorithms for deriving the inverse value
1/C of the binary divisor C situated in the range between 1/2 and 1; these methods
may be expanded to also compute the quotient from division of two numbers.

The quotient QX 1/C is formed in two stages——first the quotient 1s produced in the
form of a binary number with redundant representation of the digits, and then it is
translated into simple binary form.

Generally speaking, any positive or negative integers are used as the digits Xy in

the redundant binary number

*

Strictly speaking, this method is a particular case of restoring division--non-
performing division, by which the subtraction is carried to conclusion only in the
case of a positive difference of 2B1-C; otherwise, subtraction is interrupted and

the remainder is shifted (see section 7.8).
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The main procedure for forming the inverse value of the divisor

_ -1 -2 -n
C-cl2 +c22 + ... +cn2
provides for deriving Q in the redundant form
_ Q -1 -2
Q—aoz +a]_2 +a22 + .0

The product of CQ has to be equal, evidently, to one. Let us assume that it is
equal to the binary number 0.111 .... In arranging in matrix form the partial
products of the multiplicand C by the individual digits a; of the multiplier Q, we

see in the first column of this matrix the term ci3g0 in the second--the terms czao,

;3 in the thlrd--c3ao, Cy31s €y, etc. The main idea of the method consists in

selecting the redundant digits a, in such a way that the sum of the terms in one

column are exactly equal to one, i.e. to the next digit of the product of CQ. It
is easy to show that in the process the values of a 4 are defined by the
relationships :

a,=1,

a=I1-—¢

a,=1—(c,a,+c)

a,= 1 —(ca, +clal -I--C‘), '

....................

Described in work [5] is an array device that computes the digits a i by these

formulas. This device is very unwieldy due primarily to the large range of possi-
ble values for the digits a;. For example, with a 12-bit divis e
C —21<<ap<<b, —28< QU< 232, —80<<ais<< 1574,
Further in work [5] there is suggested successively three modifications to the
method aimed at reducing the range of values for the digits a, and simplifying the

device. In the last modification, the digits a, are within the range -3 ... +3,

i
which considerably simplifies computing the values of ay and translating Q into
conventional binary form.

5.3. Performing Division by Multiplication

In the appartus of arithmetic units of modern digital computers, there are often
realized methods of division that use particular iterative formulas that include
multiplication [6-12]. In such arithmetic units, the quotient or inverse value of
the divisor are found by successive approximations. The majority of these methods
are based on the known iterative formula :

Yin=y:(2—yC), i=0,12, .., (5.3.1)

used for the approximate computation of the value of 1/C. Here y,, ¥ Yp» «e:
are successive approximations of the value of 1/C. It is -
known that if the first approximation of Yo is within the range of 0<y<2/C,

- 49
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then yi-—>1/C when i->-00, To limit the values of y i (including yo) at the top,
the value of C is limited at the bottom. It is conventionally assumed that 1/2<C<).

Let delt:ai be the relative error of the value of yi: |
Yi=-¢({1-35).
After substituting this expression in (5.3.1), we get: | R
Yi4 =‘?(l '—'6,1)v
which means doubling the quantity of valid digits after each iteration.
The number of iterations that must be carried out to obtain the required accuracy

of the result, evidently, is strongly dependent on the choice of the first approxi-
mation. Therefore, much attention is paid to choosing the value of yo. There are

several methods for choosing Yo [9]. The most precise (up to 8-9 valid binary
signs in yo) is afforded by tabular methods {9, 11, 12].

The moment division ends in the arithmetic unit is defined not by comparing the
difference .y 17 il with some tolerance, as occurs when performing division by a

a subroutine, but by counting the number of iterations. For example, if Yo contains

8 valid digits (|l‘0|$24)-_ then to obtain, let us say, a 15-bit quotient, one
iteration is performed; two iterations are needed for a 30-bit quotient, etc.

There are a large number of different machine algorithms to implement the iterative
process based on the formula (5.3.1). To increase the rate of convergence of the
iterations, some of these algorithms provide for specific changes in the basic
formula (5.3.1) (see for example, [13], pp 535-536). Four of the most well known

- algorithsm will be briefly discussed here.

The pro'cedures performed by the first of these algorithms literally follow the
very writing of the relationship (5.3.1): y.C,

2— !/.C,

yl =Y, (2 - yQC)v
4.C,

2— lel
h=y,(2— y,C). ‘

¥C,
2 y_‘C,
Y=y, (2—yC).

In the process, each cycle of the iterative process consists of three sequentially
performed operations: multiplication, taking of the complement and multiplication
again.

. 50
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For convenience of presentation, let us introduce the designations:

x;=y1_gC , Ri=2—ux1."

One (i-th) iteration then can be described by the relationships

Xi=YiC, i=2—xi;, Yi=yiRi (5.3.2)

When i—> o, the values of xg and Ri tend to 1, but Y4 as was noted, tends to 1/C.
- In the second algorithm, the i-th iteration is described by the relatiomships
6, 10]
. %=XaRiv,  Ri=2—ux,
yi=y1Re (i=2, 3, ...). (5:3.3)

The first iteration is made somewhat differéntly, but precisely as with the first
algorithm; '

a=yeC, Ri=2—x,, pi=yR:.

The values of Xy Ri and i in these two algorithms have completely identical

numerical values (if apparatus errors are ignored), which can easily be seen by
translating the relationship (5.3.2):

x=Y;1C=Cy;_oR_1=%_1R1

(we arrive at the relationship used in the formulas (5.3.3)). The second algorithm
differs from the first only in that X, is computed by multiplying X by Ri—l

instead of using the equivalent formula x Pl i-lc' However; this difference has
considerable effect on apparatus implementation since after deriving Ri' the values
of ' and X44q can be computed simultaneously. :

Iteration in the third algorithm {8, 10, 11] is performed by the same relationships
(5.3.3) as with the second (for 1=2, 3, ...). The difference is in the first
iteration: :

x1=4oC, " R1=2—x1, h=AR,

where A is the dividend. The values of x i and Ri in the process match the similar

values derived with the first two algorithms (again if apparatus errors of multi-
plication and subtraction are ignored). But y, in this case tends to the quotient of
A/C. The third algorithm was implemented in the arithmetic unit of the IBM
360/91 machine [11]. °

The fourth algorithm was developed in the work [7]. The next, i-th, iteration in
this case consists in computing the values of

w.=w2‘_|, r‘='.|+w;, Q= Q17 ('i=2, 3, ...). (5.3.4)

- 51
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The first iteration is described by the relationships

wr—:l—ync, r‘=l +w" (Pl==yoAft. ,
If we ignore the apparatus errors of multiplication and subtraction, themn the
third and fourth algorithms practically coincide, since

x=l—wi, R=n, y=q (i=I, 2, ...).

However, the presence of apparatus errors leads to the computations by .(5.3.3) and
(5.3.4) not proceeding identically. For example, in the first case, the value of

Ri=2—x=2—x1Ri_y may be less than one, but in the second case

ri=l+w=14+w*_ cannot be less than one,

The_proceéses of accumulation of apparatus and methodological errors for the divi-
sion methods described in this section are rather complex and proceed differently
when the different algorithms are used. Apparently, there are now no methods for
precise analysis of these processes. Therefore, relatively rough estimates of
errors are generally used in practice. These estimates are based on the assumption
that the apparatus errors of the different operations (for example, the error of
multiplication of yi—lRi in the first algorithm and the error of the multiplication

of in performed after it) are independent random values, which, generally speaking,

is incorrect. The error after the i-th iteration, i.e. the difference between vy
B and the quotient sought, is usually estimated "at the top" in the assumption
that apparatus errors of all intermediate operations performed after the start of
division had the most "disadvantageous" signs and absolute values,

Since several multiplications (usually 4-5) have to be performed in every division
by any of the methods discussed here, these methods are especially efficient in
arithmetic units with fast (for example, array) multipliers.

. b.4. Fast Nonrestoring Division

Discussed in this section are various synchronous methods of fast nonrestoring
division; the nonrestoring division method described in section 7.8 is a particular
case of the group of methods considered here.

5.4.1. General Description of Nonrestoring Division

In general form, the synchronous method of nonrestoring division can be described
as follows. The operation consists of repeating one-type cycles, of which only the

first and last somewhat differ from the rest. During the next it+l-th cycle of
division in a device, the next remainder Bi+1 is computed:

B;4.,=B.»r—-a,+;C. ' (5.4. l)

Here i+l = 1, 2, 3, ... is the number of the next cycle of division; B, is the pre-
ceding remainder; r is the number system base in which the division is performed;*

*
The value of r can also be defined as the number system base in which the
quotient is formed in advance. 52
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C is the divisor and 3 is the next digit of the quotient.

From (5.4.1): & .
B,/ C=3) a;r~'+By/r*C. (5.4.2)
i=

Here k designates the full number of cycles of division. Thus, the initial remain-
der, i.e. the first of the remainders Bi’ in which the formula (5.4.1) is applied
to compute B 1+1 is the remainder BO. This initial remainder in the general case

differs from the dividend by some constant positive multiplier h:
. & - o oo .- .

A B Ea,r"—{-‘h;f%. (5.4.3)

k
The sum H 2 ar, derived in the process of performing the operations in the
imal

arithmetic unit, is usally taken as the result of the division, and the remainder
term forms, thus, the error of the operation. ’

Each (itl)-th cycle of division consists in selecting i and computing Bi+1' The

- digits of a are selected in the device by certain - rules that
include, in the general case, analysis of the values of C and B; and certain
operations with them. The remainder Bi+1’ as mentioned before, is computed in
accordance with the relationship (5.4.1). There is also produced an"attach-
B ment" of the next digit of the quotient an to the sum formed in the preceding
cycles: L
>1a‘r '
t=I
i
i.e. the value 3! artta Tt (h.4.9)

t==l

is formed.
Let us introduce the deéignation x ’ ‘ )
Q=z ar-'. . (6.4.5)
Il .
The value of Q with precision to the remainder term Bk/rkc is requal to BO/C. The

value® of hQ with precision to "
. th/r C is equal to the sought quotient of A/C:

A|C=hQ+hByjrC. . (546)
The digits a, are selected from some set xi of péxtrf.fi?ble values of the digits:
E=f, bn B (54T
For deteminaéy let us assume that .
<< ... <Em (5.4.8)
- 53
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It should be noted that the relationship used to compute B could be written in

another form. For example: 41
B(+|=fB1—G(C
_ or
. Byy=r(Bi—a;1C),
- or

- ' B”_|=f (Bl—ﬂlc)

etc. In the process, the form of notation of the relationships (5.4.2), (5.4.3)

and a number of other formulas changes. However, these translations of formulas
denote only a change in the names of the variables and constants and do not change
the essence of the method of pressure [as published] and its hardware implementation.

The set of values of xi, (j =1, 2, ..., m) and the base r are the main parameters
_ for the method of nonrestoring division. To a considerable extent, they
determine the speed and hardware complexity of the specific variant of the method.

As seen from (5.4.5), the number system base, in which the quotient Q is formed, is
the number r, and as digits ay in the r-nary digits of the number Q, the values of
xil, xiz, ey xi are used.

Let us assume for generality that this number system differs from the system in
which all numbers in a machine are represented (and, in particular, the dividend
and divisor). Let us assume that used in the machine 1s the conventional p-nary
system with the base p and the digits 0, 1, 2, ..., p-1.

The derived quotient Q must be translated from the r-nary form (5.4.5) into the
p-nary form

Q=32dyp-, (5.4.9)
in which the digits di are selected from the set
d={0, 1, ..., p—I1}. (5.4.10)

This translation may be done at the end of the operation, however also possible is
the translation of each partial quotient ¢

ESan—‘
t=I\

in each i-th cycle (1 = 1, 2, ..., k).

One can note that the relationships (5.4.1)-(5.4.3) also occur in synchronous
restoring division. The characteristic feature of nonrestoring division is precise-
ly the need of translating the quotient from the form (5.4.5) into the form (5.4.9).
In contrast to this, in restoring division, the digits of the quotient are

selected at once from the set (5.4.10).

Since keeping track of the signs of the dividend and divisor and the form of repre-
sentation of negative numbers (sign and magnitude form or two's complement code) in
the machine presents no fundamental difficulties for nonrestoring division methods,
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for simplicity of presentation, let us further assume in this chapter that A and C
- are negative numbers.®

The first cycle of division may differ from the latter omnes by the presence of 4
preparatory operation for forming the value of B.=A/h, and by the initial transla-

- tions of the starting values of the dividend and divisor described in the latter
sections of the chapter.

B} The last cycle of division may in a particular way differ from the preceding ones
as a function of the requirements made in a given device on the last remainder th.
In the simplest case, the remainder Bk is simply not calculated.

Each remainder Bi must not go beyond a certain range of values. This requires first
that the remainder term in (5.4.6) be smaller than the permissible error
of division, i.e. that when k is fairly large, this term become fairly small, and
second, that each remainder B 4 can be formed in some real device. Thus, the

inequality e

BmanBléanx. (5.4.] |)
must be adhered to, where B and Bmin are the bounds of the range of permissible
values of the remainder. Let us note that this requirement must be

t: ' ’
me B, <t.Clr—1), 5.4.12)
B"‘".‘ =R Cl(r — 1).

In fact, if, for example, By=EmC/(r—1)+4|8], then even when &i=fm
there is derived Bi=Bor-=EmC=EmC[(r—1) -+ |d]|r. ' _ In selecting further
ay=ay=. . .==p==Fm, we derive Bi=Bo+{0]r*, , i.e. the

remainders Bi will increase continuously, the remainder term in (5.4.3) will equal
: -B B 18]
hBe _p By 181
dekC h r'c +h c
and with any large |8] , the value of th/ (rkc) will not be able to be disregarded.
But if as a; are selected not xim, but other digits of the set, then the remainders

will increase even faster. Similarly, the remainders B .., B, ., ... begin to
. : 141° 142 :
- continuously increase in absolute value if _

B;< EC/ (f—l).h ’
The ranges of permissible values of the magnitudes of the dividend A, the divisor C

and the quotient of A/C depend on the number representation form adopted in the
machine and in the general case are prescribed by the inequalities

In reality, representation of negative dividends and divisors in two's complement
code has an effect on the assemblies of the arithmetic unit that perform normaliza-
tion of the divisor, selection of the next digit of 81410 translation of the
quotient and others. )
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Anin< A< Amax, (5.4.13)
Coin< C<Cruax, (54.14)
(A/C)mn<A IC< (A/C)max, (5.4.15)

where Amin’ Amax’ Cmin’ Cmax’ (A/C)min and (A/C)max are CONSTANTS.

5.4.2. Classical Method of Division

Let us call classical the conventional method of nonrestoring division [14].
Division by this method is done in the r-nary number system using the following
set of permissible values of the digits of the quotient:

- , E=l=(r—1), —(r—2), ..., -2, —1, 1, 2, ..., r—1). (5.4.16)

The boundaries of the range (5.4.11l) of permissible values of the remainders for
the classical method are the values

Bmax=§mcl (f‘—l)-
Brn=t:C| (r—1), (5.4.17)

i.e, the values of +C and -C. Thus,
—C<Bi<C. (5.4.18)

The rules for selecting the next digit a for any of the division methods

i+l
described in section 5.4 can, as will be shown later, be modified somewhat. In
particular, for the method using set (5.4.16), one can suggest different rules.
The most well known of them has been formulated in work [1l4, p 42] in the following
form: if B,>0(R<0), then the diviser C is repeatedly subtracted
(added) from B,r so long as the sign of this difference (sum) is opposite to the

i In the process, the digit ai+1 in absolute value is

- equal to the number of subtractions (additions) made and has a plus (minus) sign.

sign of the value of B

Let us show that if Bi satisfies the inequality (5.4.18), then the cited rule for

selecting the digit a4 provides for fulfillment of it and for the following

remainder B Let us write the value of B, in the form rB,=(M-i;e)C,' where

i+1°

*
A more precise formulation would have to be the following: if B,>0 (Bi<0),”
then the divisor C is repeatedly subtracted (added) from Bir so long as the sign of

this difference (sum) is opposite to the sign of the value of B or until the
quantity of additions (subtractions) made equals r-1.
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M is an integer (--r<M<r), and ® satisfies the inequality 0<e<lI

(when M=r, it should be assumed that e=0 as required by (5.4.18)). The dependency
of a; and B:H-l on M, realized by the given rule for selection of a1 is shown in

table 5.4.1.

Table 5.4.1.

M Y] Bits
r r—1 C—(r—1)C=C
r—1 r—1 (r—14s)C—
——(I—I)C=¢C
01,2, r—2 M4+1 (M40 C—
—(M+1) C=—C (1—3)
—(r—1), —(r—2), ... M M+e)C—MC=C
e —2,— 1
—r —(r—1) (—r+4e)CH (—1)C=
=—C{l—¢

It is evident from the table that the new remainder B:L+1 is within the same range
(5.4.18) as Bi (here and from now on it is assumed that 1if —;Z?’:—;E‘-——:b, where
pC 1is a multiple of the divisor C, then this difference has a plus sign).

Let us assume that the numbers in a machine are represented in a conventional r-nary
system using the set of digits

d=({0, 1,2, ... r—1}, (5.4.19)
T
and let us show that one can relatively simply translate the sum 2 a,r-!

" into this number system in each (i+l)-th cycle of division. =t

i+1
Let the number ) a,r-t, which has in tue system with the set (5.4.16) the
f==1 '

form 0, qia; ... a‘a,+{.
after translation into the system with the set (5.4.19) look like this
O. d|d.... dld‘l-l-l' :

1
-1 ’ ~1-1
i.e. be equal to 2 dr="d'yyr : Since BO is greater than or equal
t==1

to 0, then a, is equal to or greater than 1 and therefore after the first cycle of

division, thi number 0, a, in the number system that uses the set (5.4.16), and this
same number 0, d'1 in the system that uses the set (5.4.19), are written identically,
i.e. d'1'=al. After the second cycle, the numbers 0, aa, and 0’ dld'2 are also
written identically, if B1 is greater than or equal to 0, since in the process, a,
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is greater than 0. But if B1 is less than 0, then a, is greater than 0 and

dl=d'l-1 and d'2=r+az. Continuing similar discussions, we arrive at the fact that
if Bi is greater than or equal to 0, then an is greater than 0, and the translated
quotient after (i+l)-th cycle has the form

0, dd, ... dl_xd/d'H_i:;O, didy ... diad’;6u,

i.e. in this case di=d"i, d'11=0in. But if B, is less than 0, then

an is less than 0 and the translated quotient is written in the form
0, did, ... diy(d'+—1) (r+ai),

i.e. di=d'i—1, dipi==r4-aimn. Thus, Thus, to calculate the sum (5.4.4)
with simultaneous translation of the quotient, all that is needed in addition to a
shift register is a two-digit r-nary subtraction circuit.

0f special interest is the case of r = 2 which corresponds to the widely spread
binary nonrestoring division discussed in section 7.8. A feature of this method is

the simplicity of selecting the digit a4y calculating the new remainder Bi+1 and

translating the quotient:

if Bi=20," then ap=1, di=d"=1, d’ 1y =0 4=1,
or if B, <0, then a4 =-—1, d=d'—1=0, d'y=r +a=1.

If we assume that the (i+l)-th cycle is called the aggregate of the following opera-
tions:

a) selection of an by the sign of Bi’

b) selection of di and writing of di as the final digit of the quotient, and
c) calculation of Bi+l=2Bi-ai+lc’ then it should be stated that k+l cycles

in all are performed in the division, but the first and last of them are incomplete:

in the first cycle, only Bl is calculated (a1 is necessarily equal to 1 and d0 is

not selected), and in the last cycle, only dk is selected (since ak+1 and Bk+1

not needed). After completion of the division, the precise relationships between
the dividend, the divisor, the derived quotient and the last remainder Bk have the
following form:

are

k

A B,
if B, >0, then ?;.=h ?t“='h d,2"+ h By
:—21 20

L4
if h A B,
or 1 Bk <Ov then ?=hv=h2d,2"+h—3§;§£.

(L]

In the division exahples given in section 7.8, the constant h was equal to 2.
Speeding up conventional nonrestoring division (r = 2), just as speeding up restor-
ing division (see section 5.1), can be achieved by making a device for division in
the form of an iterative array,
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Fig . 54.2

{Cm = Sm = Adder]

Shown in fig. 5.4.1 is one of the simplest modifications of such an array, made up
of identical elements. Each element (fig. 5.4.2) contains a coincidence-type one-
digit binary adder Sm and an EXCLUSIVE OR element that realizes the function

cq + Tq and controls the input of the divisor into the adder. The 8-bit dividend
A= g, a,3,3,2,8:3,3,8g, the 4-bit divisor C = Co c1c2c3c4 and each remainder Bi

(in particular, the last remainder B5 = bO’ b1b2b3b6) are represented in two's com-
plement code. It is assumed that the dividend and divisor are positive normalized

fractions (i.e. ay = ¢y = 0, a =¢; = 1). Since 1/2 is less than or equal to A is

less than 1 and 1/2 is less than or equal to C is less than 1, then the quotient
Q= 45 q2q3q4 is a positive number lying within the range 1/2 is less than Q is

less than 2, i.e. 9 is an integral part of this number. Each digit of the quo-
tient 9y is the control signal for the next row of the matrix that determines what

operation--addition or subtraction--has to be performed in this row. Subtraction,
as is evident from figs. 5.4.1 and 5.4.2, is performed by forming the two's comple-
ment code of the divisor.

Division is speeded up in this device, just as in the device analyzed earlier (fig.
5.1.2), not by improving the algorithm for the operation, but by using high-speed
miniature elements connected by short conductors.

- Let us now discuss a modification to the circuit just described that allows
achieving an additional increase in the speed of division [4]. The main idea of

the modification consists in eliminating the time for carry propagation along each
row of the matrix. To this end, first, each remainder Bi in each row
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Fig. 54.3

will be computed in the form of two numbers: the number S, made up .of the step-by-
step sums Sj’ and the number E, made up of the step-by-step carries ej (the sum of

these two numbers equals the remainder Bi)' and second, the carry into the sign bit
of the row, the next digit of the quotient and the control signal for the next row
(to add or subtract) will be formed by using a carry advance circuit.

Shown in fig. 5.4.3 is a modified iterative array for a 4-hit divisor and an 8-bit

dividend. The array uses three types of cells (A, S and P) and minor complementary
logic.

The operations performed in the i-th row of the matrix (i =1, 2, ...) correspond
_ to the operations performed during the next i-th cycle of conventional nonrestoring
division: if 9 = 1 (0), then the divisor C is subtracted (added) from the next

remainder ZBi-l' In this case, this procedure is performed the following way:

25 =81 8 8 . . ¢ Spoy By aru-l} 28
2=ey ty0y. . slpay 0 g, =
deo €16 o Cn-g Camyen
S'=5'08"8"y0 + Spey a’n-l"n}B ‘
E El =gy, 80y, « .0 p-ge'pn,0 ‘

Here n is the number of digits in the divisor.

The divisor is subtracted by adding the two's complement code of the number -C; the
two's complement code is derived by inverting all digits cj and .adding one (qi-1= 1)
to the low-order digit.
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The P cells (fig. 5.4.4) contain the logic for advance determination of the carry
into the sign (zero) bit of the next remainder. The advance circuit in the i-th
row must generate the signal

P=Dy+RiDz2+RiR3Ds+ ... +RiRs ... Rn—aDpn_4,

where Dj=s's's, Ri=s";+¢'; are the auxiliary bit functions for origina-
tion of the carry and permission for carry propagation. It is obvious that this
part of the circuit depends on the length of the operands n; for a large length of
n, a multistage carry advance circuit has to be used (shown in fig. 5.4.4 is a
cell, with the use of which the advance circuit wiil be single-stage only when n
is less than or equal to 3). The P cell in the i-th row of the matrix generates a
carry to the zero bit derived during addition of the numbers

582 ... $'nmt

+
ey ... e

!cn_}‘i)
2 ei-rm

T ! o U
- - ()X (1) A

)/ } &
s
) ic)i
Fig, 5.4.4.
Key:
1. OR 3. NOT
2. AND 4. Adder

The S cell (fig. 5.4.4) of the i-th row sums the digits SO' e'o and co (this sum

is equal to 0 or 1 as a function of whether the number of one's among the digits
Sg° € and <o is even or odd); the resulting sum is then added to the carry e' 0

derived during addition with storage of the carries in the adjacent A element

(the structure of this element is shown in fig. 5.4.4). Finally, the result is
summed with the carry obtained in the P element. The final sum is the sign bit of
the remainder -Bi’ i,e., the value of 'qi. The digit 9y itself is formed by the in-

verter in the S cell of the next row.
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As usual in nonrestoring division, the relationship

AIC=Q+Bs|2C (whenB:l?O) )
A|C=Q+ (Bs+C)|2C ghenBs<0).

is observed between the dividend, divisor, quotient and last remainder (in this
case, the remainder BS)'

It should be noted that using just one carry advance circuit in each row of a con~
ventional matrix (fig. 5.4.1) would not produce such results; carries would have to
be speeded up in all digits of the remainder and a large quantity of additional
apparatus would be required for this. It is precisely the combination of forming
the remainder in two-row code and obtaining the advance carry into the sign bit that
allows achieving considerable speed-up of division with moderate outlays., It can be
seen from fig. 5.4.3 and 5.4.4 that total operation time is

m(‘tA+TP+"-'yEx_0R )s

wvhere m is the number of bits of the quotient; t:auA is the delay time for one A
cell; t:auP is the operating time for a P element (here it is assumed that the

advance circuit is single-stage); and t:auEX ~OR is the delay time for the EXCLUSIVE
OR element generating the digit tri.

5.4.3. Graphic-Analytic Method of Division Process Analysis

Before considering the nonrestoring division methods that use sets differi:ig from
the classical set (5.4.16), let us introduce into the discussion the graphic repre-
sentations of the zones xij on the plane B iC [15, 17]. These representations allow

us to analyze the connections between the value of r and the structure of the cir-
cuit for selecting the digit a1+1.

Let us assumc that the bounds of the range (5.4.11) of permissible values of remain-
ders Bi are the values (5.4.17), i.e, that

C
',E:T <Bx<;§;"'-cr (i=1,2,.., k. (6.4.20)

This means thaf: with given Bi and C, as ai+l one can select some digit xi, from the

J
set xi, if -E'C<Bf-—EC< Elﬂ{:
r—1i ! I~ Tr—10»
i.e, if
o= t.C §C EmC e :
Wh <B4 Y A
or

En() (Em —&)) c (B — E._) C <B < E,..C _‘Eﬂ:E_/)_C_
= 2] 1 Uy B r ’
(5.4.22)
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Corresponding to the inequality (5.4.22) is the fig. (En~E)mox Em-EG
5.4.5 in which on the plane B iC is shaded the zone r —irz;':ﬁ':'/l' /JﬂFIlﬂ_‘

of values of the magnitudes of Bi and C with which

(5.4.22) is satisfied. Reflected in the figure is
a certain special case, for which

len\)o. E|<0' EI<Em' __Emc__ (EM—E[)C _ (EM"'EI)C >0-

Y SO

r—1 r rir—1) &1Cmox 0 Smlimax i
r-1 ] r-1
Fig,.545
Nevertheless, the following presentation is general
in nature.
It is easy to see the correspondence between the fig.
5.4.5 and the terms in the left and right parts of
the double inequality (5.4.22);
m C
the term '(E,'(-,:E'l))"- corresponds to the width of the zone of the digit xiJ.
(it is evident that this width is not a function of the value of xij itself), and
(En— &) C
the term ————— corresponds to the horizontal distance between the right

r
edge of the zone and the line GL.

And so, if a point with the coordinates of By, C falls in fig. 5.4.5 within the

shaded zone that corresponds to some digit xij, then this digit can be selected as

aj41° It is evident that for the division process to be realized using some set

x1 of the digits xij, each point within the quadrangle EFGL in fig. 5.4.5 must

enter into the zone of at least one of the digits of the set. For this, on the
plane BiC, the zones of the adjacent digits of the set (5.4.7) must overlap or at

least be tangent to each other, i.e. the shift between zones of each two adjacent

digits x:i_j and xij+1 must be less than or equal to the width of the zone. Since the

shift between the indicated zones (fig. 5.4.6) 1is equal to

(EIH“ EI)C
=,

, then the requirement (‘§l+.|—'§j)Cl‘fs(gm—gl)clf(f—l) must be met, i.e.

Ea—b<(En—t1)/ (r—1) (j=1, 2,...,m—1). (54.23)
From (5.4.23), one can derive the requirement of mz=r.. :
LE—E<E—E) (1),
=L <E—E)r—1),

..............

Ern ~Em-| <(Em ——E,)/(r - l)

In fact,
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Adding separately the left and right
parts of all of these inequalities,

A2

Gl‘fyllfmu

r(r-1)

(&je1—E&j) Cmax
T

we get

Em— RS (m—1) (Em—t0) [ (r—1),

hence it follows that '
m=r. ) (5.4.24)

& (Em—&j)Cmax

N\, / r

FR—m—————= >~ \

N /s
N | fEeS

Shown in fig. 5.4.7 are the zones
of the digits of the set (5.4.16)

!

!

|

!

i
used with classical division =
(values of xi, are indicated in the L

upper part of the zones). It is
assumed that cmin = 0, It can be r-1

e
— /-P’L
/
\ V/
\
4

&Em Cmax B
r-1

seen from the figure that the zones ' Fig,. 546
of the digits overlap in such a

way that in the cases of
C("“)Ir<BiéCv 0<B[<C/f, ' 4
—Cr< B0, —C<B<L—C(r—1)|r -2 =l

O

a certain digit of the set must be
selected, and namely the digit
(respectively) r-1, 1, =1, =(r-1).

For the cases of

Bi=pC[r (p==%2, %3, ..., =(r—2)),

which correspond to thé bounds of the
zones, one of three digits can be
selected:

Lo

Cmag Crmox
(1) Emee

b e —

It -
0 Lmax 5 Eman
r r

*(p—1), xp, £(p+1).
Fig. 547
In all remaining cases, one of two
possible digits can be selected since

all corresponding sectors of the plane BiC are covered by two zones. Just which of

- these digits is selected is a function of the rule adopted for selecting the digits

a,.
1

From fig. 5.4.7, we also see that a characteristic feature of set (5.4.16) is that

the zones of the two middle digits (+ 1 and -1) do not overlap, but are merely tan-
gent to each other, Therefore, in selecting 85410 it 1s necessary to know the sign

of the remainder B, and consequently, the remainder must be computed in the arithme~

i
tic unit in the form of one number, i.e. one-row code (the circuit im fig. 5.4.3 is
the exception).
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¢
=1 J 7 +71
Ny — — i ey~
3 A 1| Cmax
~1 l“mﬂl +1
| | | ,
| | ! gz
' 7
} | \\\ \ L'!nlnll S/
! : N \\ /I Y/»
l [ N\ i/
_l i \\\ //
= Cmax v Cmax Bi N\ |/ -
Fig. 548 1 _;’ 10 1 ?r 1 B;
Fig. 549

- Shown in fig. 5.4.8 are the zones for the particular case of the set (5.4.16) that
corresponds to conventional nonrestoring binary division (r = 2). In this case, the
zones of the digits xij do not overlap (fig. 5.4.8).

The presence of overlap of the zones of the digits xi j on the plane B iC reflects the

redundancy of the set xi which leads to the capability of ambiguous representation
of numbers in the number system using the digits xij. This capability, as will be

shown in the next section, in certain cases allows a substantial increase in the
speed of division.

5.4.4. Division Using Symmetrical Set of Integers Including Zero
Until recently, in addition to the classical set (5.4.16), only one form of sets xi:

E=(—q, —(q—1), .... =1, 0, 1, ..., g—1, g}, (5.4.25)

where q is an integer and satisfies the inequality
.t o
—y<q<r—1.

was still being used for representation of the digits of the quotient being formed
in nonrestoring division methods. '

- The first of the division methods using sets of this form was the method [18-20} in
which

=2 b= (=10, +1).  (5426)
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Besides that, a division method [20, 21] was described with the parameters

r=4, t={—2, —1, 0, 1, 2}, (5.4.27)
the method [22] with the parameters _
r=4, =(—3,—2, —1,0,1,2,3) (5428
and the method [20] with the parameters

r=10, E=(—7, —6, —5, —4, —3, —2, —I,
0, 1,2 3, 4,56, 7). (5.4.29)

In general form the set of the form (5.4.25) was described in work [20].

- The sets (5.4.25) when q is greater than (r - 1)/2 are redundant. In works [18, 19],
there was suggested the method of using this redundancy for set (5.4.26) which con-
sists in beginning to calculate the remainder B by formula (5.4.1) in the form of
two-row code in an adder with storage of carries, i.e. in the form of a series of
step-by~step sums and a series of step-by-step carries. This sharply reduces the
time of one cycle and consequently the time for the whole division.

Shown in fig. 5.4.9 is the arrangement of zones for the set (5.4.26), Redundancy of
the set leads to overlapping of the zones of adjacent digits and allows selecting
a1 based on the simple rule of direct analysis of the high-order bits of the num-

ber Bi' With a normalized divisor U}2s§C<:U and a remainder lying within the
range of —C<B<C, » for proper selection of the digit ;.1 it is suffi-

cient to know only the four high-order bits of the two-row code of the remainder B,.
If the two indicated four-bit numbers are added, then upon obtaining the four-bit
sum B*i, one can select the digit ag by using a simple table (table 5.4.2).

- Table 5.4.2.

By % b 8, Uy

0, XXX 1,0XX | —1
I, 11X 0 1,X0X | —1

The X's in the table designate the bits, the values of the digits in which can be
arbitrary. The validity of the rule reflected in the table is confirmed by fig.
5.4.9 from which it can be seen that since

0<B,—B"< +,

*
the selection, for example, of ai+1=0 when Bi = 1,110 (i.e. =1/4) cannot lead to an

incorrect result of division since all remainders
1 1 1

- irrespective of the value of C lie in the zone of the digit x12=0.
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The solid vertical lines in this

figure divide the zones of operation <

of the decoders that select the digit f
(in the process it should be

assumed that the value of B is
plotted along the axis of the
abscissa): left of the line AB is 3

selected a1 -1, between AB and the

axis of the ordinate 1s selected
a +1=0, and to the right of the axis

|
l

of the ordinate a,,.=+1 is selected. 2 ! 0
i+l 3

1

|
s d
win

This confirms the evident idea that
the bounds of the zones of operation
of the decoders must pass within the
sectors of overlapping of the zones
of the corresponding digits xij.

Fig, 54.10

Shown in fig. 5.4.10 are the zones of the digits xij for another of the sets men-

tioned-=(5.4.27). It is evident from the figure that if a is selected through

i+l
direct analysis of the remainder and divisor, the decoders of the digits in this
case must be substantially more complex. First, it can be seen that in addition to
the remainder B» the divisor C should also be analyzed since within the sector of

overlap of the zones for the digits 1 and 2, a vertical line cannot pass from the
line EL to the line FG. Second, it can be seen that a relatively large number of
bits of the numbers B, and C must be analyzed. In fact, let us assume for simpli-
city that Bi is * calculated in the form of one-row code. The decoder of any

digit xij can be represented as several AND circuits whose outputs are logically

summed in an OR circuit. Several bits of the numbers B, and C are fed to each AND
circuit. In the process, for each such AND circuit on “the plane B.C there are one
or more rectangles whose sides are parallel to the axes of the ~ ”~ coordinates.,
The rectangles corresponding to all the AND circuits of the decoder of some digit -
x1J must fully cover over the plane of BiC of the sectors, the right and left

bounds of which in the process are made up of the "stairs," which must be posi-
tioned within the sectors of overlapping of the zone of the digit xij with the two
adjacent digits of the set xi. Shown in fig. 5.4.10 1s one of the possible
subdivisions of the plane into zones of operation of the decoders. It is evident
that the more "steps" the bounds of its zone contain, the more complex the decoder:
turns out. Hence it follows that the more complex the decoder, the narrower the
sectors of overlapping of the zone of the digit xij with the zones xij_l and xiJ 1

and the greater the slope of the sectors of overlapping.

For the set (5.4.25) with given r and q, the sectors of overlépping of the zones of
the extreme pairs of digits (xil and xiz, xim_l and xiﬁ) have the maximal slopes.
The width of the sector of overlapping for the set .(5.4.25), as seen from fig. 5.4.6,
1s equal to (bn—8)C  (Gu—8IC_ 2q—r+1

= rr=1

Trir—=1 r
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With a given r, the greater q is, the greater is this value. The maximum value
(when q = r-1) is C/r. But even with maximal q, the number of steps in the stairs
increases rapidly as the values of r become larger. This follows from the diminish-
ment of the width of the sector of overlap equal to C/r; the width of the whole
range of remainders when q = r-1 and variation of r remains constant is:

EnC

r—1

nax -_— Elcmax_‘

r— 1" “maxe

It is easy to show that for other types of sets xi too when the method of selection
of an by direct decoding of Bi and C is used, the decoders become more complex
(under otherwise equal conditions) as r increases. The quantity of m decoders also,
naturally, increases since m 1s greater than or equal to r.

In work [23], a division method with the parameters =2, t=(—2, —1,0, +1, +2}

was suggested; in this method, the remainder Bi+l is computed in the form of two-row
code, however these two rows are not made up by step-by-step sums and carries
of a conventional binary adder. The remainder Bi+1 is formed in the redundant

binary number system (r = 2) with permissible values of the digits -1, 0 and +1.
The remainder is computed with high speed since there is no carry propagation in
doing so. But due to the increase in quantity of permissible digits in the set xi-
and the complexity of the input circuits of the adder associated with this, this
method apparently has no advantages compared to the methods described in [18, 19].

Another method for selecting the digit a was suggested in work [20]; It is based

i+l
on an analysis of the signs of the approximately computed diff-rences

B—MC (j=1, 2, ..., m—1),

where Mj are some constants, For example, for the set (5.4.27), the differences

are computed

3 . 1 | 3
B, 3-C, B+ C, B, —5C, B, ~ C. (5430)

Given in fig. 5.4.11 on the plane B,C are the straight lines, the equation of which

i
corresponds to the differences (5.4.30) computed for selecting of the digit of the
quotient when the set (5.4.27) is used. The sign of the difference is indicated by
the side of the corresponding straight line on which the point with the coordinates
Bi’ C is located. It is evident that the quantity of constants Mj’ actually, must

be equal to m-1, each line Bi-MjC must pass within the sector of overlap of zones
of the digits xij and Xij+1’ and the digits a1 themselves must in the process be
selected by the rule (let us assume that M;<M,<...<M,_):
a,,,=§, if B,—MC<0,
_ . ' a,, =%, if B —M, C=>0,

ai+|:'; 3 if {Bl*MIC<O'
B‘ "M’_‘CEO-
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It also follows from the figure that
the error in computing the difference

B1 - MjC must not exceed the distance

between the line Bi - MjC = 0 and the

boundary of the sector of overlap of
of the two zones within which this
line must pass.

Since m is greater than or equal to r,
then in general as r increases, the
quantity of the differences of

Bi-MjC increases; in the process, the

| |
apparatus difficulties and the time ; ” ; .
needed to select the next r-nary digit ary 2 i
of the quotient increase accordingly. )
Fig,54.11

In {24], a method was suggested that
allows achieving addition speed-up in
nonrestoring division when the set

(5.4.26) is used with computation of B in the form of two-row code. It was sug-

it
gested that a matrix of one-digit adders be used, in each stage of which there is

determined the next digit 3 and the new remainder Bi+1 computed. The gain in

speed in the process can be very great. In fact, when one n-bit adder is used to
compute the two-row code of Bi+l’ the transmission of the preceding remainder from

the outputs of the adder to its inputs (with simultaneous shift by one position to
the left) with the use of flip-flop registers or delay lines may take no less time
than the computation itself of the new remainder. The matrix of adders in such a
device may also be used for multiplication,

With small values of r (for example, when r is less than or equal to 4) and two-row
representation of the remainder, the matrices of adders can evidently be used alsc
for division with other sets of permissible values of the digits of the quotient.

It follows from relationship (5.4.2) that an increase in the value of r means in
essence . a proportional increase in the speed of division (assuming the cycle time
remains unchanged). For example, one, two, three or four bits of the quotient are
determined at once within one cycle when r = 2, 4, 8 or 16 respectively.

The main and essentially sole obstacle to increasing the value of r used in division
is the apparatus complexity (or greater inputs of time) for selecting the next '
digit 341" In this and the preceding sections, three main methods of selecting

a4 were described:

1) repeated subtraction (addition) of C from rB:l (for classical division);
2) approximate computation of auxiliary differences of type Bi'M C; and

3
3) direct decoding of the values of B, and C.
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Significant increase in time losses or apparatus complexity of the circuit for
selecting a,1ar increase when the first two .methods are used are evident, since
as r increases, the quantity of digits in sets (5.4.16) and (5.4.25) is increased,
and consequently, the number of addition-subtraction procedures increases for both
methods. The increase in quantity and complexity of decoders for selecting an
with direct analysis of Bi and C has already also been mentioned.

Division methods with large values of r will be covered in the next section of this
chapter. In these methods, direct analysis of B, and C will be performed in

selecting A It should be noted that if the “remainder Bi is formed in the form

of two-row code, then the "staircase" of the decoder must not . approach on
the plane BiC closer to the right boundary of the sector of overlap than the dis—

tance corresponding to the maximal difference between the part B* of the remainder
being analyzed and the precise value of the remainder B,. This ~distance therefore

- must not exceed the width of the sector of overlap and even must be substantially
less than it, since otherwise the quantity of "steps" and decoder complexity associ-
ated with it may increase intolerably. With large values of r, decoders of digits
become complicated (even with one-row code of the remainder). The presence of two-
row code cf the remainder owing to the indicated circumstance complicates these de-

- coders even more since it leads to an additional increase of steps in the "stair-
cases." On the other hand, if there are entered in the inputs of the decoders not
the digits of two-row code, but the outputs of an additional adder that adds several
high-order bits of the two-row code (this is done to simplify the decoders), then
the requirement to reduce the maximal difference between B* and B. leads to the
necessity of increasing the length of this adder, which in turn réduces the gain in
speed. Therefore, as well as to facilitate the subsequent presentation, let us
assume that Bi is computed in the form of one-row code, although the methods to be
presented subSequently are also applicable in the case of two-row code of the
remainder.

5.4.5. Generalized Method of Nonrestoring Division and Investigation of It

D¢ "cribed here is the synchronous method of division suggested in 1966 [17] whose
main feature is the capability of using large values of r while affording high speed
in selecting digits of the quotient a- This method has permitted, in. particular,
development of an arithmetic unit that performs division in the number system
with the base of r=16, i.e. that determines within one cycle at once 4 binary
positions of the quotient [15].

It was shown in the preceding section that an attempt to seriously increase the value

of r leads to considerable complexity of the circuit for selecting the digit ai+1°
_ Let us show that a method of selecting a based on direct decoding of B1 and c

can nevertheless permit switching to considerably large values of r if other sets xi
are used in the process.

This capability is based on the following idea. Since when the set with equally
spaced digits xijis used, the decoders of the individual digits xij become more com-

plicated as the absolute value of xij increases because of the increase in slope of

the boundaries of the zone of this digit on the plane BiC, then we should switch to
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those sets in which the overlap of zones of adjacent digits increases as the abso-
lute values of these digits increase. In the process, the increase in slope will to
a considerable extent be compensated by the increase in overlap so that the quantity
of steps in the "staircases' will not increase rapidly. In other words, we have to
switch from sets (5.4.16) and (5.4.25) that contain only equally spaced numbers to
sets that do not contain equally spaced numbers. The possibility of this solution
is concealed in the inequality (5.4.23) which is the sole limitation imposed on the
difference between the adjacent digits of the set xi and which permits with given
xi1 and xim including in the set xi any real numbers that satisfy this inequality.
But on the other hand, expanding the overlap sectors leads to an increase in the num-
ber of digits in the set xi which increases the quantity of divisor multiples to be
generated and complicates the input circuits of the adders that compute Bi+1' The

optimum (under which the total apparatus of the circuit for selecting ai+l,.the cir-

cuit for computing Bi and the circuit for tramslating the quotient is minimal) de-
pends on the element system used. Therefore, here we can restrict ourselves to just
a general consideration of the fact that in realizing this method, the overlaps of
the zones of the middle digits of the set xi must be, apparently, less than for the
set (5.4.16) since the decoders of these digits are very simple and they can be made
somewhat more complicated, having obtained as compensation a reduction in the quanti-
ty of digits xi,, but for the extreme digits of the set, the overlaps must be larger
than for the set (5.4.16), although in the process the number of digits in the set

xi also increases.

Before moving on to a discussion of the concrete sets xi, let us clear up the limi-
- tations imposed on the extreme digits of these sets, i.e. on the values of xil and
xi .
m

Let us note that the quotient of B./C is found in the range that depends on h and
on the range (5.4.15) of the quotignt of A/C:

Ay (B B, (’Z--) =1 (:"_)
h (C)mln-_"(c)mlns c < '.C max k c max.
(5.4.3})
On the other hand, B ' must satisfy the inequality (5.4.20). After substituting

A/h = B, in (5.4.20), we obtain the requirement

8C/ (r—1)<AIh<EnC] (r—1), (5.4.32)

which together with (5.4.15) defines the relationship between the constants h, xil
and xi_.
-

Let us consider first the case when (A/C)min=o which occurs when the numbers are
represented in fixed-point form. 1t follows from (5.4.32) and (5.4.15)
that in the process the values of xil and x:l.m must satisfy the requirements

. Eléoo (5'4‘33)
Em= (A/C)mex(r—1) /1. (5.4.34)
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Of course, one can assume that xI1. and xim are given (and &ieg0) and Instead of
inequality (5.4.34) derive from (%.4.32) and (5.4.15) the inequality that imposes a
restriction on the constant h:

= (A C)max (r—1) [ Em, (5.4.35)

Let us now consider the case when (A/C) . 1s greater than 0 which corresponds to
representation of numbers in floating—pgiﬁt form. It follows from (5.4.32) and
(5.4.15) that in the process there can be selected both the value xi. is less than
or equal to O and xi, is greater than 0. If xi. is less than or equal to 0, then
xim must in design be selected on the basis of requirement (5.4.34) or, which is the
same, h must be selected based on (5.4.35). If xi_  is greater than 0, then from

- (5.4.32) and (5.4.15) there must be derived the requirement

(A1C) max (r—1) [Em<h <
< (A/CYmim (r—1) /&1 (5.4.36)

One can assume that (5.4.36) indicates the permissible bounds for h with given xi
and xi_. One can conversely assume that the value of h is given and the parameters

xil an xim are selected with regard to the requirements

8 (A/C) i (r—1) [h,
En=(A/CYmax (r—1) /h (5.4.37)

It can also be seen from (5.4.36) that when x1, is greater tham 0, irrespective of
the value of h there must be met the requirmen

Ern/§1> (A /C)max/ (A/C) min. (5.4.38) )

Let us illustrate the meaning of inequalities (5.4.37) and (5.4.38) in the example
of division of the mantissas of A and C of numbers represented in floating-point
form., 1In this case

N<AM, N<C<gM, (5.4.39)

where M and N are constants, and ¥>0. In the process
NIM<AICSMIN, (5.440)

i.e. the requirment (5.4.38) in this case has the form
EnEi>(M/N)E.

In fig. 5.4.12, the shaded zone PRST shows the permissible values of A and C, and
in fig. 5.4.13, zone EFGL shows the permissible values of the quantities C and Bi'
When

Ly AN/MY (r=1) Jh,  Ey==(M/N)(r—1) /i,
i.e. in the case of the "boundary" meeting of the requirements (5.4.37) and (5.4.38),
the square PRST after substitution of B =A/h is transformed into the shaded rectangle

on the plane B,C, It is evident from “the figures that violation of any of the

inequalities (5.4.37) leads to the shaded rectangle in fig, 5.4.13 starting to
go beyond the limits of the zone of permissible values.
72
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It should be noted that both approaches taken (with the one, it is assumed that xi
- and Xim are given, while with the other, that h is given) differ only methodological-
ly. .

s
M NN 20
AN
) \QI
;\\\
b ;\\\
ek
I// l .
Q{ A b
0 &M EnN §mH
r-l  r-l r-l
Fig. 54.12 Fig.54.13

In considering the relationship between h and xi. and xi , it should be noted that
the accepted relationships (5.4.1) and (5.4.3) ~permit n ambiguous description of
the same method of division. In fact, the process of dividing the dividend A by the
divisor C using the set xi of digits xi, with a certain constant h and remainders Bi
lying within the range (5.4.20) described by the relationships (5.4.1) - (5.4.3),
(5.4.7), (5.4.8), (5.4.11), (5.4.13) - (5.4.15) and (5.4.20) will as before be de-
scribed by these relationships if instead of h, xi, and Bi (including B,.) we will
consider the values of h/phi, phi xi,, phi B wherl phi i8 any positive constant.
Thus, for example, the division methdd definad by the relationships

o4 g-..{_2,_—-l ;. 0 1, 2};
0 A1 l <CL I, ——;-C<B,<-§—C; h=4,
and the method
ek g {_4, _zv;—, 0, 2-"‘—, 4};

! ) 4
QAL X0 —-3~C<B,<~;-C; ho:?2
are the same method implementable by the same apparatus.

To achieve uniqueness of description, we shall from now on notate the set xi, as is
essentially done for the sets (5.4.16) and (5.4.25), in such a way (i.e. select that
constant phi) that, first, all values of x:lj are integers (this is possible since
we are dealing with rational numbers of xij ) and second, that the greatest common
divisor of the numbers of xij is equal to “one. Consequently, the example just

_ cited should be written as “follows: T

: r=4; §=(~16, —9, 0, 9, 16); _
1 16 16 1

0< A<} 3 KCK —7CLB<5C h=5.

' (5.4.41)
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_ Fig. 54.14

&m Cmax
P

Fig.54.16

Let us move now to a consideration of some sets of xi with a variable "step" between
the digits of xi,. The set (5.4.41) is the first of these examples. The arrange-
ment of the zones of digits on the plane B,C for this set is shown in fig. 5.4.14.

It can be seen from the figure that thanks to the variable "step" between the digits
of xi,, the width of the overlap sector between zones 9 and 16 is wider than between
the zdnes 0 and 9. After comparing figs. 5.4.14 and 5.4.10, we see that the over-

lap of zones 0 and 9 is less than 0 and 1, but in return the overlap of the extreme
zones 9 and 16 is larger than 1 and 2.
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Another example of a symmetrical set with unequal positioning of the digits is
shovn in fig. 5.4.15 for the case r = 16:
§==L—30.——29,——28,-—27,7-26,——25,—~24,——23,
——22,-—2],-—19,——17,—-15,——13,—~ll,——8,—-5,
-2, 2, 5,8, 11, 13, 15, 17, 19, 21, 22
23, 24, 25, 26, 27, 28, 29, 30}. (5.4.42)

To simplify the figure, the zones of the negative digits are not shown fully.

The number of steps in the ideal “staircases" separating the zones of adjacent
digits of the set are indicated in the little circles in this and some subsequent
figures. By convention a staircase is saild to be ideal when all angles are tangent

- to the bounds of the overlap sector, i.e. a "staircase" that has the minimal number
of steps. These values permit evaluating the complexity of the corresponding
decoders that select the digits of the quotient.*

The maximally permitted number of steps in the "staircase" is a function of the
element system, the speed required and other circumstances. Let us assume, for in-
stance, that there should be no more than 5 steps in ideal “staircases."

Despite the considerable overlapping of the zones of the extreme digits of the set
(5.4.42), the number of steps in the ideal "staircases" is still large—-up to 7
steps. It can be seen from fig. 5.4.15 that a further increase in overlap of the
zones cannot yield a substantial decrease in the number of steps. In fact, no

, matter how small, for example, the difference xim—xim_l,'the "staircase" between

the zones of these two digits will still contain at least 6 steps. But even 6
steps, as stipulated above, is too many. Let us examine a method of countering
this difficulty.

A more precise formulation of the rule for depicting

the "staircase" is desirable for further presentation,

i.e. for the boundary between the zones of operation : [
of the decoders of two numbers of the set xi on the
plane B.C. Refinement concerns the points belonging ~
directly to the very sections of the lines forming
the "staircase." The rule is explained by fig.
5.4.16. The arrows indicate which zone--right or
left--the points situated on the sections of the
"gtaircases" are considered to fall in., Points of
the plane that are located outside the "staircase"
itself on the right or left of it fall, naturally, 0

in the right or left zones. As indicated earlier, Fijy 54.16
the “staircase" that separates the zones of opera- C
tion of the decoders of the two adjacent digits xij

and xij+1 of the set xi must be located within

* It is noted that after work [17] appeared, the suggestions on using graphic plots
of the zones of the digits of the quotient on plane B.C and on estimating the appa-
ratus outlays for the circuit to select the digits of "the quotient by the number of
steps in the "staircases" (admittedly, only for sets .(5.4.25)) were slso made In
works [22, 25 and 16].
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the sector of overlap of the zones of these two digits, can touch the bounds of the
sector of overlap, but must not go beyond them.

A A I
AN o YAy F : L 0
S
E Cmin L
'\\\ ,7
Y /-
[ oS Bi-HC
Cmax EnCmax &¢ g 0
g%l_ %7—" r!-;m ¥ —Hmox E'r"-';m—”ﬂm‘
Fig. 54.17 Fig.54.18

From now on, we will follow this same rule in depicting the zones of digits in other
coordinates.

Let us now show how the decoders that select the digits of a, can be simplified.
Let on the plane B.C be shown (fig. 5.4.17) the zone EFGL of permitted remainders
and divisors. The bounds of the zones of the individual digits of xi, are straight
lines whose equations are written in this form 3

Bi=KC,

where
—_ Em E]
K."’T(r—' N +T

fur the right boundary of the zone of & and

& &
K= r(r— i) + r
for the left zone.

, Let us show this entire system of lines in a new system of coordinates, in which
on the axes are plotted the values of B -HC and C (fig. 5.4.18), where H is a posi-

tive constant. On the plane B.C (see fig. 5.4.17), corresponding to the value of H
- is the line OC' with the equation

B—HC=0.
The quadrangle EFGL 'moves" from plane B,C to plane B,-HC, C in such a way that the
sections FG and EL keep their length. The same ocCurs from the zone of any digit

. of xi,: neither its width (with a given C) nor the width of the overlap sectors
chang%s. But the slopes of the boundaries of all the zones change. 1In particular,
the slopes of those zones which in fig. 5.4.17 were located on the right of 0C' or
on the left of 0C', but closer to OC' than to OC, change in such a way that the new
"staircases," drawn for these zones in the new system of coordinates, have fewer
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steps than in the old system

(it is assumed that each of the
segments of the lines that make up
the "staircase" is parallel to one
of the axes of the coordinates).
One can similarly draw in fig.
5.4.17 on the left of 0C another
line 0C" with the equation

—B—HC=0,

DOOOEG

23 24 75 78 93

so that in the third system of
coordinates obtained, -B_ -HC, C,
the left zones of the digits of
xij occupy a favorable position.
As an example, the zones of the
extreme digits of the set (5.4.42)
shown earlier in fig. 5.4.15 are )3
shown in fig. 5.4.19 in the system 71858
f coordinat 2

of coordinates Bl'—":i“c’ C.

b
EN
=
2
=
%

- It is seen from the figure that
the number of steps has been
sharply reduced in the ideal L
"staircases" for the digits of 13, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30.

Fig, 54.19

i —13, —15, —17, —19, —21, —29, —23, —24, —25,
The zones of the negative digits 26, —27, —28, —29, —30

occupy precisely the same position on the plane 3
—'Bl - '*2 C. C.

It follows from what has been said that if in a device for division.that uses set
(5.4.42), except the remainder B, the differences B,——g-c' _B,---z—C
are computed and the decoders built to select digits 13, 15, 17, ..., 30 by decoding
the high-order positions of the values of B 3 c

I—T (] C- 3
the digits =13, -15, -17, ..., =30 by decoding the values of —B—=5C C

and the digits -8, -5, -2, 2, 5 and 8 by conventional decoding of B, and C, then the
decoders of the extreme digits of the set will be significantly sim{)’l:[.fied.*

Since there are now.rather few steps in the "staircases," it is advisable to reduce .
- the number of digits in the set xi, which Iin a number of cases can yield a substan-
tial gain in apparatus, '

* Tacoders like ‘the others cannot be built for the digits 411 and -11; these digits
can be selected by the following simple rule: ag=+I11 (—i1), 1f Bi=0 (B,<0)

and no other digit of the set xi is selected in the process.
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The set in question, (5.4.42), can be re-
placed, for example, by the set -5 ® a2 & ® 5 @ 7@y@

g=(—30, —27, —24, —21, —18, —16, —14,
—12, —11, -9, —7, —5, —2, 2, 5,7, 9,
11, 12, 14, 16, 18, 21, 24, 27, 30}, (5.4.43)

the arrangement of zones of which on the
planes

BC:B,—-3C, C: —B,—>cC.C

N~

is shown in figs. 5.4.20 and 5.4.21; in

fig. 5.4.21, two identical figures are

imposed on each other: one for the zones ...
o positive digits in coordinates

o ——

5
B, — ~;- c.c Fig.54.20

and the other for the zones of
the negative digits in
coordinates

.0 08 @ ®

+"(Q 2.2
ol 14 415 8_ +y 24

~B,—-)-C. C.

1

The digits ~11, -9, -7, =5, =2,
2, 5, 7, 9 and 11 can be
selected by direct decoding of
the values of Bi and C; the
digits 14, 16, 18, 21, 24, 27
and 30 by analysis of

B,——-C andC

and the digits =30, -27, =24,

-21, -18, -16, and -14 by : ,

analysis of ‘ i ?
~B,— ;-C and C '

Fig,%42|

It is seen from the figures
that in the process, all ideal
"staircases" contain no more than four steps. The digits =12 and +12 can be
selected by a rule similar to that given earlier for the digits +11 and =11 of the
set (5.4.42).

Let us consider the question of the quantity of binary positions in the supplementary
adders that compute the difference of the type +B,~HC. There is no need for these
differences to be computed precisely. In these adders, it is sufficient to pro-
cess the values represented by several high-order positions of the numbers Bi’ HC.
However, in the process, the rules for designing the decoders of the digits xij
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and the rules for drawing the "staircases" within the sectors of overlap of the
zones of the adjacent digits of the set must be changed in a suitable way.

Let 2 w2+ be the weights of the high-order and low-order significant binary
positions of the adder that computes the difference of the type +B,-HC. Let .us
assume that the negative numbers -HC enter the inputs of the adder im inverse code
and that there is no ring carry circuit in this adder. Let us also stipulate that
the positive and negative numbers at the output of the adder are represented in
sign-and-magnitude code and complement code

(complement with respect to 2t 1). The approximate number +B —HC, obtained at out-—
puts of the adder will be designated in the form (B -HC) in" eontrast to the pre-
cise number +B —HC.

The values of Bi and HC can be represented in the following form:

B(=K2-'+, HC=Kj2-'+v,

where Kl and K2 are integers, K2 is greater than 0, and beta and gamma satisfy the

inequalities
o< <2, 0qy <2t

First let us consider the computation of the difference of B,-HC. Since this differ-

ence is used to select ayn only when B is greater than 0, "it can be assumed that

the number B is positive and represented in sign-and-magnitude code. Let us also
assume that “the number B1 is in some register B. The high~order digits of the num-—
ber Bi go from the register B into the adder of B i-HC also in sign-and-magnitude code.
~HC is B(—HC=(K\—K)2~'+ (B—y).
i *%

In the adder in the process are added the numbers K2 and © (2tH—K,2-1-2-1) .

The precise difference of B

If Kl is greater than K2, at the outputs of the adder is obtained the negative

number (B,—HC)*= (Ky—K2)2-'—-2-1.

If Kl is less than or equal to KZ’ then obtained at the adder outruts is the number

20+ (K—Ki)2-'—2,

which corresponds to representation in the complement code of the negative number

(8—HC)* = (Ki—K3g)2-'—2-4,

In both cases
0<B--HC—(B—HC)* =2-14(f—y) <2:2-%.  (54.44)

*% , '
Since the maximal value of Bi is - EmCmaz(r—1),

the requirement  2rtif,Con/(r--1)2! must be satisfied.
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Consequently, the number Bi—HC lies on the numeric axis to the right of the number
*
(Bi—HC) at a distance less than the value of two one's of the low-order position

_ of the adder of Bi-HC.

Let us now go to the adder of -B.-HC. Since this adder is used when B, is less than

0, let us assume that Kl is less " than 0. The precise difference of -B;—HC is

—Bi—HC = (—Ki—Kz)2-'— (p+y).

Let us also assume that the number Bi is represented in register B in complement
code:

20K — | By| =214 K 2-14 B

and that the high-order bits of the register B are inverted prior to transmission
to the adder of -Bi—HC.

The numbers (21120 — K212 ) = (- -K271—2"1) and (2141 —K;2-1—2-1) ok
are added in the adder.
If —K>K+2 » then at the adder outputs there is obtained the negative

number (—B—HC)*=i(—K—Kz)2-'—2-2"1.

2y

I KKt , the addition result is  2'+i—(K4Ky)2-'—2-2-L
which corresponds to the representation in complement code of the negative number
(—B(—HC)* = (—K—K;3)2-1—2-2-1,

In both cases
0<B—HC—(B(—HC)*=2-2-'— (B+y) <2-2-!,

i.e. again the number -Bi—HC lies on the numeric axis to the right of the number
*
(-Bi-HC) at a distance that does not exceed the value of two one's of the low-order
position of the adder of —Bi—HC.
Stemming from what has been said and from fig. 5.4.16 is the following rule for con-

structing "staircases™ within the sectors of overlap of the zones of the digits xij
on the plane ]Bil - HC, C: '"Staircases" must not go beyond the left boundary of

the overlap zone and must not approach closer to the right boundary than the distance
equal to the value of one one of the low-order position of the adder of ipi—HC.

%*
Since the maximum value of ]Bil when B, 18 less than 0 18  |E1|Cmas/(r—1),

i
- then 2(+1>|t|Caax/ (1) 22"
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When necessary (for example, with small overlaps of the 2ones of the digits of xij)
one can compute several differences of the type iBi-Hc with various constants H;

sach of these differences can be used to construct decoders of a certain group of
digits of xi,. ‘

One fine point should be noted in the interpretation of the graphic depiction of
the zones of the digits and the zones of operation of the decoders in the coordi-
nates |Bi| -HC, C: the digit zone boundaries are represented on the assumption

that the precise difference of 'Bit -HC is plotted on the axis of the abscissas,

and the decoder operation zone boundaries are constructed on the assumption that
the value derived at the adder of 'Bil ~HC outputs, i.e. the value of (lBil -HC) ,

is indicated on the axis of the abscissas.

Usually the assemblies of a device for division are substantially simplified with
a symmetrical set of xi (i.e. if xij = -xim_j+l; j=1, 2, «e., m/2 with even m;

i=1, 2, <.y (m-1)/2 with odd m). 1In particular, one common decoder as shown in
fig. 5.4.22 can be built for the pair of symetrical digits of x:Lj and X1m-j+1'

The signals 4B and -B are the output signals of the
sign bit of register B, i.e. +B=1 when B is
greater than or equal to 0, and -B=1 when B, is less
than 0. If the set xi is symmetrical, thenthe
assembly for computing B + and the assembly for
translating the quotient are also simplified.

The use, described in this section, of approximate
differences of the type of +B.-HC differs essentially
from the use of similar diffe¥ences described in
work [20] (see section 5.4.4). There the approximate
differences were computed only to determine the signs
of these differences and the quantity of differemnces
to be computed increased rapidly as m increased. In our case, the difference of
(i-_Bi-HC)* is needed to construct decoders; therefore, not only its sign is used,

but also its magnitude, The quantity of differences is not large: even for m = 20-
30, it is sufficient to compute two differences of ‘the type of iBi—HC.

Let us discuss briefly the problem of detecting overflow of the quotient that occurs
during division of fixed-point numbers. ’

Up to now in this chapter, we have assumed that the dividend A and divisor C are

within the ranges (5.4.13) and (5.4.14), vith Cmin greater than 0, However, during
division of fixed-point numbers, the )

* *
true dividend A and divisor C are located in the range

} 0<<A*<<R, 0<C*<R (5.4.45)

ok %
and therefore before beginning the division, A" and C must be translated into A and
C. 1In the process, the ratio of these two values must be preserved.
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An overflow signal must be generated if the quotient exceeds the value of R. This
may occur both when C*=0 and when C* # 0. The first situation causes no apparatus
difficulties. Let us consider in more detail the case of C* # 0.

* *
The simplest implementation of the procedure for translating A" and C into A and C
is the normalization of the divisor C* and the same shift to the left of the
dividend A*:

A=p/A*  C=pl/C* (5.4.46)

Here p is the base of the number system used for number representation in the ma=-
chine; f is the number of zeros before the high-order significant digit in the
n-position number C*. It is evident that if C* # 0, then :

<f<n—I. (5.4.47)
* *
Let us assume that A and C are translated into A and C by using normalization.

An overflow can be detected by various methods. For example, the following method
can be used. Since C is less than or equal to R, let us compare A and R2. If

A>R3, (5.4.48)

then let us assume that an overflow occurs. But if A is less than or equal to Rz,
- this does not mean that there is no overflow.

Let us require that fulfillment of the inequality
Bo<<t,mCpin/ (r—1). (5.4.49)
be automatically provided for when A is less than or equal to R2. Since in fixed-

point division, (A/C) . =0, then xi, is less than or equal to 0 and therefore ful-
min 1

fillment of the inequality (5.4.49) means that the point with the coordinates B ,» C
falls on the plane B,C in the zone of permissible values. Since we now assume

that A is less than or equal to Rz, then, after substituting BO=A/h=R2/h in (5.4.49),
we obtain the requirement

h=R*(r—1)/Cainkm. - (5.4.50)
Shaded in fig. 5.4.23 is the
rectangle on the plane AC, in
which the point with coordi- A c
nates A, C may be found, and Cnox=R 37 >
the rectangle on the plane // / Crmaxt> —a
B.C, in which the point B.,C 7 7 /A// e
i 0 . A -
may fall when Cmin Cmin! {
//l
- h=R?*(r—1) /Counf | bi
= — Ingm. :
S v WA 0" Enlain Enlma
r-1 r-1
; Fig, 5.4.23
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Thus, the constant h should be selected with regard to requirement .(5.4.50). In
the process, division will be correctly performed for all k cycles (i.e. all Bi
will be found in the range of permissible values), after which will remain only
checking the inequality e e e e

hQ>R, (5.4.51)

the fulfillment of which should be evaluated as an indication of overflow.

An example of application of this method of overflow detection will be described
in section 5.4.6. :

5.4.6. Example of Realization of Generalized Method of Nonrestoring Division

Let us briefly consider the structure of a device for division built on the basis
of results presented in this chapter.

The division method implemented in the indicated arithmetic unit and the unit it-
self have the following parameters [15, 17]: p = 2, n = 28, point is fixed in
front of the high-order position, r = 16, h =1, k=7, :

E=(—30, —929, —28, —27, —26, —24, —29, —19, —ib, —13,
10, —8, —5, —2, 2, 5, 8, 10, 13, 16, 19, 22, 24, 26, 27, 28, 29, 30).

(6.4.52)
- * -
It is evident that R =1 = 2 28 and therefore the initial dividend A and divisor
*
C are located in the ranges
T 012, 0O 1228

: *
(the case of C =0 is not considered here).

After normalization of the numbers A* and C*, the values of A and .C are located in
the ranges )

0CAL2H1—2-1, 2-1<C<K1—2-%,
i.e. Cain=2"", Cmaz=1—-2"28,

If A is greater than or equal to 1, i.e. if A is greater than R? + 2-.28

‘ , then an
overflow signal is generated. It is evident that in the process,

*x %
A /C is greater than 1. But if
0<AI-—2-38, 2-1<C1—2-2,

then division proceeds correctly for all 7 cycles since the selected value of h
provides for fulfillment of the inequality (5.4.49).

At the end of the division operation, a check is made of the inequality .(5.4.51)
which in this case has the form .

hQ=1.
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Fig, 54.25

Fig.54.24

If hQ is greater than or equal to 1, then an overflow indication is also generated.

The range (5.4.20) of permissible values of remainders Bi has the form
—20<Big2C.

The middle digits of the set xi (digits -8, -5, -2, 2, 5 and 8) are selected by
using decoders that analyze the high-order positions of the values of B, and C.
The arrangement of the zones of these digits and the zones of operation of the
corresponding decoders on the plane BiC is shown in fig. 5.4.24.

Two supplementary adders that compute differences of the type of iﬁi—HC, namely the
differences of

B i—C and =B i—C

are used in the unit to select the extreme digits of the set xi (the digits -3Q,
-29, -28, -27, -26, -24, -22, -19, -16, -13, 13, 16, 19, 22, 24, 26, 27, 28, 29

- and 30).
The arrangement of the zones of the extreme digits of the set (5.4.52) and the
zones of operation of the corresponding decoders on the plane |B ‘ -C, C is shown
in fig. 5.4.25. The decoders of the extreme digits are construc%ed in accordance
with the fig. 5.4.22, i,e. combined in pairs.

The double supplementary adder of |Bi| - C contains 9 positions; the weights of
the high-order and low-order positions of this adder equal 1 and 2“8 respectively.

Therefore, the "staircases" of the decoders in fig. 5.4.25 must not approach (and
do not approach) closer to the right boundary of the sector of overlap of the
zones than by 277,

- : 84
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The digit -10 (+10) is selected automatically when B, is less. than Q@ (B, is
greater than or equal to 0) and when no other digit of set xi is selected the
process. The decoders of the digits xi,, Just as all the other assemblies in the
arithmetic unit are built with the poteﬁtial system of elements, which contains a
NOT gate and an F shaper (amplifier), implemented by a transistor current switch
circuit, emitter followers and diode AND and OR logic circuits. A circuit for se-
lecting the digit xi12=—8 is shown as an example in fig. 5.4.26. One can trace

the correspondence of this circuit to the zone shown in fig. 5.4.24. Positions of
the numbers are numbered from left to right: O (weight 1), 1 (weight 2_1),

2 (weight 2—2) etc. The signal -B is the output of the sign register B and equals
1 when Bi is less than 0. The auxiliary signals Dl’ D2 and D3 are generated by

the individual circuits in such a way that

1 when 1/2 is less than or equal to C is less than 37/64,
1 when 45/64 is less than or equal to C is less than 53/64, and
D, 1 when 53/64 is less than or equal to C is less than 1.

D, D D D
3 - - Coae e e o Ay l
8, ll? Ay By 6 Ly ‘o/g 8,856, Cs Gy Cs By Oy Bs -8 B8y 8y By 8y Bs A

1)

#nm ] OR
-0 8, 6 5 fy

Fig. 54.26

Key:
1. [all nine blocks on this level represent] AND circuits

Quotient digit decoders contain from 22 to 80 diodes each. The decoders of +2 and
-2 (22 diodes each) and of +24 (24 diodes) have the simplest circuits; decoders of
+5 and -5 (80 diodes each) have the most complex circuits.
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Key: Key:
1. Register C 1. Adder 3C
2, Circuit to compute Bi+1 2, Circuit to form Pl and P2
3. Adder of ]Bi[ -C 3. Register P
‘ 4, Adder Sml
4. Decoders to select an 5. Adder Sm2
5. Circuit to form and translate 6. Register B
quotient
Table 5.4.3.
P 3 P P
o 4 m 1 n, 2 L n 1 m 2
A2 0 F-2C 22 Fauc 4-2C
15 00 4-3C -+-24 Fuc 0
4-8 .1-8C 0 J-26 24C F2C
10 | cEsC F2C +27 4-24C F3C
- 13 FI6C +4-3C +-28 3240 F4aC
16 | FI6C 0 ¥20 F3C +3C
o | FieC | F3c ¥30 F32C F2C

A block diagram of a unit for division is shown in fig. 5.4.27; the circuit that
computes the next remainder Bi+1 that enters the unit is shown in fig. 5.4.28.

The values of the multiples Pl and 'P2 of the divisor C, selected from the set

Pl = (x32¢, x£2C, £16C, =8C, 0)

p. = {+4C £3C, £2¢, 0)
2
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by the rules defined by table 5.4.3 provide for fulfillment of the relationship

P1 + P2 = -a

As seen from the table, each of the multiples Pl or P2 is formed from the number C
shifted by the needed number of positions, or the number 3C generated by the

auxiliary adder 3C.

1+1C

Look-ahead carries have been organized in adder Sm2.

The circuit that translates the quotient Q into binary form is essentially a 7-bit
binary adder. The values of xij of the set (5.4.52) are 5-bit binary numbers. A

direct exhaustive search of all possible cases shows that in addition of two binary

numbers
{

2 a16=! 4 ayy16-1-1
=

the carry run does not exceed three bits, and the borrow run, seven bits. A 3-bit
carry is obtained, for example, if a; = 19 or 27, and a1 is greater than or equal

to 16: e .
M. XX« 2 a16-1
1=t
IXXXX ey, 16711
141
Koo o XXX 2} ar16~!

fen]

+

A 7-bit borrow rum occurs if a; = 5, 13 or 29, 8 = -16, and ais is less than 0:

i
oo X0 I e Y a6t
|- tem| . -
1000 Qam e e e @460
Xoxiumooo
" ) gxxxxxw—»-————muﬂwL‘
i+2
- oo X0 T T TR =— ) a6

t=1

The 7-bit adder in the circuit that translates the quotient is built with the use
of parallel-parallel logic, i.e. there are no carry or borrow signals in the cir-
cuit, and the time to form all seven bits of the sum is the delay time of one
active element.

The successful combination of multiplication and division operations in the arith-
metic unit developed should be noted. Multiplication 1s performed in 5 cycles;
during each cycle, the product of the multiplicand by 6 successive digits of the
multiplier A is added to the running sum of the partial products, In the process,
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the same adders Sml, Sm2 and 3C (fig. 5.4.28), the same multiples P. and P, of the
multiplicand C (in the multiplication operation, another two values of the multiple
P2 equal to +C, are used), and the same registers B and P are used. The apparatus,

installed in an arithmetic unit just for the division operation (circuit to trans-—

late the quotient, adders of iﬁi—c and decoders to select the digit ai+1) and not

used in other operations (multiplication, addition, subtraction, shifts and logic
operations) makes up only 10 percent of the total unit size. This indicates that
under certain conditions, the described division methods can be successfully com-
bined with the well-known methods for performing the other operations without
requiring substantial additional outlays for equipment.

It should be noted that at present there are apparently no other machines, in the
arithmetic units of which, synchronous methods of nonrestoring division would
afford obtaining four or at least three binary digits of the quotient at once in
one cycle.

Obtaining more than four bits of the quotient in a cycle can be effected by units

that perform division by using iterations (cycles), during each of which, multi-

plication operations are performed (see section 5.3). In such units, the number

of quotient bits obtained can, for example, be doubled after each cycle. However,

use of these methods is warranted only in arithmetic units that perform multipli-

- cation at very high speed. Conversely, the generalized method of synchronous
nonrestoring division permits considerably raising the speed of division in arith-
metic units that use relatively inexpensive (in the sense of apparatus outlays)
methods for speeding up multiplication and which contain therefore a relatively
small amount of hardware.
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